HEWLETTEPACKARD

Computer Systems

LO

1978 Volume Il Issue. 3

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

ANNOUNCING THE FIRST HP-21 CALCULATOR WINNERS!

The following people have been awarded an HP-21 Scientific calculator for submitting the best feature-length article to the
HP-1000 Communicator.

Customer: John A. Danos of Rohm & Haas, Bristol, Pennsylvania, for “Data Acquisition via HP 2313 Subsystem at Low
Sampling Rates”.

HP Internal: Lyle Weiman of HP Data Systems for ' Advanced Debugging Techniques”. Lyle is in the Software Engineering Lab.

Both articles are included in this issue of the Communicator.

An HP-21 will be awarded to a customer and to an HP person each issue for the best feature-length article which falls in the
categories:

Operating Systems

Instrumentation

Operations Management

Computation
To be “feature-length”, an article must have at least 1600 words, exclusive of listings and illustrations. This rule was relaxed for
John A. Danos because the distribution schedule of the Communicator did not permit the rules to be published in time for this
issue.
The eligibility rules (repeated from last issue) are:
1. No individual will be awarded more than one calculator per calendar year.

2. In the case of multiple authors, the calculator will be awarded to the first listed author of the winning article.

3. An article which is part of a series will compete on its own merits with other articles in this issue. The total of all articles in the
series will not compete against the total of all articles in another series.

4. Employees of Technical Marketing in the HP Data Systems Division (Division 22) are not eligible.
All entries will be judged by a team of at least 3 people in Technical Marketing.
The deadlines for articles for the remainder of 1978 are:

Issue # 5 - August 15th
Issue # 6 - October 15th

All winners are announced in the HP-1000 Communicator in which their winning article appears.
ANNOUNCING OEM CORNER!

This issue marks the start of a major new section of the Communicator - OEM Corner. This section is for HP customers who
market software of their own development for use on HP-1000 systems. The software may be a part of a system package which
the OEM delivers as a “turnkey” package or a stand-alone software package. HP has many quality OEMs whose products often
address markets which are specialized or aimed at a specific application area. Therefore, these products complement the

systems offered by HP itself.

In this issue, we have “A Modern Language for On-Line Systems” by David C. Hamilton of Theta Computer Systems in Van
Nuys, California.

EDITOR'S DESK

To qualify for inclusion in OEM Corner, an article should be of general interest to our readers and have educational value. That
is, it should describe a technique or method of doing something. The article should contain numerous examples and be
application-oriented rather than theoretical. We encourage the OEM to describe as many of the features of his product as he

wishes but, in all cases, we are looking for general inter-educational value. A reprint of a press refease or a marketing brochure
is not sufficiently technical to qualify.

We encourage the OEM to place, at the very end of the article, up to 150 words of purely commercial information. This may
include prices of the product and ordering information.

The article should be a minimum of 4 typed, double-spaced pages. A typical maximum length might be 10 pages but may
exceed this.

Deadlines for specific issues of the Communicator are the same as those above for the calculator. Address all communications
to:

Editor HP-1000 Communicator
HP Data Systems Division
11000 Wolfe Road

Cupertino, California 95014
Building 42U

All communications should include the author's address and phone number.

If possible, include the text of the article in machine-readable form, i.e. a file on magnetic tape, mini-cartridge or paper tape.

CONTENTS

UsersQueue..............ccoooviienn. 1 OEM Corner
® A Modern Language for On-Line
Operating Systems Systems Development 44
e Know Your DS-1000, Part2 2
e Advanced Debugging Techniques 15
e Generating a Minimum RTE Il System 23 Bit Bucket
® Spooling is Easy with High-Level Interface ... 24
® Save Time and Effort in Generating e Software Samantha 51
Your First RTE-M Basic System 29
Computation
® Microcoded Fast Fourier Transform 32 Bulletins
e Plotting on the 39871A Printer
Through a 26XX Terminal 33 e RTE II/Ill to RTE IV Upgrade
Course Available 52
Instrumentation e New Training Program for HP-1000
Computer Systems 53
e Data Acquisition Via HP 2313 ® TrainingSchedule 55

Subsystem at Low Sampling Rates 37 ® User Training Services 6c

USER'S QUEUE

The User's Queue includes announcements of new programs added to the Contributed Library (LOCUS) and tips, techniques
or methods suggested by our readers.

We have not received any new programs for LOCUS since the last issue of the Communicator.
The following letter comes to us on the capabilities of the Formatter.

“l'am enclosing a routine | wrote to test the capabilities of the FTN4 Formatter for writing real or double precision numbers using
aninteger. | have used this capability with other compilers and was quite pleased to see that it worked with the new Formatter.

I have found it quite useful for printing line counters which exceed integer magnitude or to print large floating point numbers
without the decimal point.

I hope this will be of use to others who dislike using code to remove the trailing decimal point.

Yours truly,

John Conner

Digicon Geophysical Corporation
3701 Kirby Drive, Suite 112
Houston, Texas 77098”

FTN4,L
PROGRAM FMTST(3,89)
c
C SHOW CAPABILITY TO WRITE REAL OR DOUBLE PRECISION NUMBERS
C IN INTEGER FORMAT.
c
DOUBLE PRECISION J
REAL I
INTEGER LU(S)
CALL RMPAR (LW
IF (LU.EQ.D0) LU = 1
100 WRITE (LU,1000)
1000 FORMAT (' ENTER 2 FLOATING POINT VALUES:_™)
READ (LU,#)> I,J
IF ¢(1.EQ.0.) GO TO 999
c
C WRITE THEM OUT AS FLOATING POINT AND INTEGER
c
WRITE C(LU,1010) I,I,J,d

1010 FORMAT (' #1 AS REAL “F25.12,/,

& " #2 AS INTEGER = *I12,/,
& ** #3 AS DOUBLE = "F25.12,/,
& " #4 AS INTEGER = "I[12)
GO TO 100
999 END
ENDs$

Many thanks to John Conner. | am sure that many of you will also be interesed in this capability.

KNOW YOUR DS/1000, PART 2

Al Liu | DSD
This is the second of a series of articles on the internals of the DS/1000 software. To comprehend these articles requires a basic

understanding and knowledge of DS/1000 which is described in the DS/1000 Programmer's Reference Manual and the
DS/1000 Network Manager's Manual.

The intention of this article is to provide:

A. a configuration chart of software modules to generate an optimized system at a node,

B. a functional description of each DS/1000 software module,

C. the lists and the nodal entry points in the resident subsystem global area (SSGA) module called RES.
NOTE iH

DS/1000 software is supported by HP only at the user interface level documented in the
DS/1000 Programmer's Reference Manual. Subroutines not documented which are
described or mentioned herein or elsewhere in the series, must never be called directly
from a user program. They are not supported by HP when used in such manner. They are
described or mentioned solely for the purpose of illustration. Their functions and calling
sequences are subject to change without notice to any user.

The third article in this series will describe;
a. anode’s initialization by LSTEN,
b. the error detection and reporting scheme,
c. the error recovery scheme,
A. A Configuration Chart of Software Modules to Generate an Optimized Node
The DS/1000 software numbering catalogue shows a list of 33 relocatable modules (excluding two diagnostic absolute
modules). It is unnecessary to include all of them in a node’s system generation. The selection of these modules is based
upon:
a. the types of communication link (whether to another DS/1000 or to a DS/3000) are included at this node.
b. the type of system for the node, i.e. whether a RTE-lll, a RTE-MII or a RTE-MIII.
c. the options to be included at the node depending on the user's applications. For example, if a node is used for

program-to-program communication only, then PTOPM module should be included. RFAM (remote-file-access)
module and EXECM/EXECW modules (remote-EXEC-calls) need not be included in the generation of the node.

The following chart is intended to help you in selecting the proper modules for an optimized system at a node. In the chart,
each module is identified with its *'program type by default” (implying the recommended type) and its size in number of
pages. The purpose is that as you go along the chart selecting the modules, you will be aware of which modules are
memory resident. Totalling their sizes will give you an estimate of the size of the memory resident portion of DS/1000in the
node, which is generally a concern in a system generation especially for RTE-M. Likewise, you also will know the number of
disc/partition resident DS/1000 programs in the node and their sizes. This knowledge will enable you to assign partitions
optimally in the system generation for the node.

Following the chart are functional descriptions for these modules. The sequence of modules described follows the order in
which they are listed in the chart, top to bottom and left to right.

LEGEND: NAME (TYPE, #PAGES)
TYPE: 0 = SYSTEM MODULE
REQUIRED LSTEN (19, 5) 1 = MEMORY RESIDENT
NUCLEUS OPLIN (17. 1) 3 = BACKGROUND DISC RESIDENT
: 7 = UTILITY SUBROUTINE
FTWARE DSLB1 (7, 2
0 SLB1 (7. 2) 17 = MEMORY RESIDENT & SEGA
19 = BACKGROUND DISC RESIDENT & SEGA
QUEUE (17, 1)
GRPM (17, 1)
1000-1000 QcLm (19, 1) REQUIRED 1000-1000
LINK {NCLUDED RTRY {17, 1) SOFTWARE
DVAG5 (0, .5)
DSLB2 (7, 2)
REQUIRED REMAT (19, 5)
“1000-3000 EXECW (19, 2)
. D3KL2 (7, -001) :
ONLY DLIST {19, 2) OPTIONAL 1000-1000
SOFTWARE PROGL {19, 4) SOFTWARE
NDTGN (3, 5)
SGPRP (3, 1)
RMTIO (9, 1)
RTE-M
LOADR (3, 12) OPTIONAL
RTE-1It EDITR (19, 6) RTE-NI
RTMLG (3, 12) SOFTWARE
WITH LGLIB
REDIT (19, 1)
SEGLD (7, .5) OPTIONAL
APLDR (1, 2) RTE-M
DSML1 (7, .025) SOFTWARE
DSML2 (7, .025)
v 1000-3000
— LINK INCLUDED
V ,7
QUEX (19, 3)
QUEZ (17, 1)
REQUIRED RPCNV (19, 2)
;goFOT'fxgg RQCNV (19, 2)
E
D3KLB (7, 6) DSLES (7, 26) REQUIRED
DVG67 (0, 8) 1000-1000 ONLY"
IONA
?()PgogoooL CNSLM {19, 2)
- RMOTE (19, 5)
SOFTWARE
OPTIONAL EXECM (19, 3)
DS/1000 OPERM (19, 2)
RFAM (19, 6)
SOFTWARE PTOPM (19, 2)

ORPERATING SYSTEMS

B. Functional Descriptions of the DS/1000 Software Modules

Legend : software modules (type, # pages) = description

Required Nucleus Software

LSTEN (19, 5)

UPLIN (17, 1)

DSLB1 (7, 2)

GET

D65GT

#REQU
D658V
DRTEQ
PGMAD

RES

initializes the local node by setting up list pointers in RES, allocating class numbers and resource numbers
for inter-module communications and synchronization control, and enabling the communication lines. it is
also used to quiesce the node and to change the timeout parameters for each communication link.

a time-scheduled program (run once every 5 seconds, initiated by LSTEN) to perform the following
functions:

1) checks and updates timeout values in all transactions (i.e. DS/1000 as well as DS/3000),

2) releases the class buffer and the TCB of a timed out transaction if required,

3) re-schedules GRPM, RTRY, QCLM, QUEX, QUEZ or any Network Interface Monitors (NIMs) if they are
dormant,

4) re-enables any downed link.

contains library subroutines:

contains subroutines - GET, ACEPT, REJCT, FINIS used by the slave program in a program-to-program
communication.

does CLASS GET on specified class # , then moves data in the "gotten” class buffer to the caller's buffer
when CLASS GET is completed.

re-queues a class buffer to another class or to an EQT.

sends a reply (and data if any) back to the originating node (as a “slave” replying to a “master”).
given a LU # , it returns the LU's DRT content and its EQT address.

given a program name, it returns the ID' segment address, program status and a flag for long/short ID.
contains :

the TCB (Transaction Control Block) list headers and their maintenance subroutine #RSAX.
the Transaction Status Table (TST) header for DS/3000 link only.

the Nodal Routing Vector Table (NRV) header.
the entry points that are global to the node's software modules.

AW =
D —

(The actual TCBs, TSTs and NRVs reside in a large block of System Avaitable Memory allocated by LSTEN
when it is initializing the node.)

Required “1000-3000 only” Software

D3KL2 (7,.001)

contains a dummy entry point for D65MS for a system not linked to any DS/1000 node.

Required 1000-1000 Software

QUEUE (17, 1)

scheduled by the DS/1000 driver DVAB5 when a new transaction is to be read from the interrupting line.

It performs a CLASS READ of the pending input into either GRPM's class, or PROGL's class in case the
transaction is for a down-load.

GRPM (17, 1)

QCLM (19, 1)

RTRY (17, 1)

DVAB5 (0 ,.5)

DSLB2 (7, 2)

OPERATING SYSTEMS

General-Request/Reply-Processor-Module for 1000-1000 link is the heart of 1000-1000 communications.

Al transactions either incoming from or outgoing to a DS/1000 node must go through this module. This

includes the store-and-forward operation. The functions of this module have been described in “Know
Your DS/1000, Part 1”. Its counterpart in 1000-3000 link is QUEX.

prints out error message passed on from GRPM.

error retry for GRPM by holding back the rejected request for a delay time period before giving it back to
GRPM.

the driver for 1000-1000 link. It requires the firmware ROMs.

contains RFA subroutines and utilities , remote EXEC call subroutines, etc. They are all type 7, i.e. utility.

1) DMESG = sends "TELLOP” message to the system console at another node.

2) DMESS = sends operator commands to a DS/1000 node to be executed. Similar to MESSS in
HP-1000.

3) FCOPY = transfers a file from any disc to any disc in the network.

4) FLOAD = forces a download of an absolute program into a RTE-M node. It requires a working
RTE-M system at the destination node with the DS/1000 APLDR. This is not for cold-boot-
loading a remote node!

5) GNODE = returns the local node #, specified in the global constant #NODE in RES, to the caller.

6) RFMST = contains subroutines that make remote file access calls (in other words , FMP calls on a

file at a remote DS/1000 node). The following lists these subroutines and their
counterparts in FMP.

RFA FMP
DAPOS APOSN
DCLOS CLOSE
DCONT FCONT
DCRET CREAT
DLOCF LOCF
DNAME NAMF
DOPEN OPEN
DPOSN POSNT
DPURG PURGE
DREAD READF
DSTAT FSTAT
DWIND RWNDF
DWRIT WRITF

They all call the common subroutine $PREP in RFMST to build front end of the request
buffer and to move the 4-word psuedo-DCB to the request buffer. They all call D65MS to
send the request buffer to the DS/1000 node.

7) DEXEC = similarto EXEC calls except DEXEC calls can send requests to another DS/1000 node.
DEXEC calls work exactly the same as EXEC calls when applied to the local node. When
applied to a remote node , DEXEC only accepts codes 1, 2, 3,6, 9, 10, 11, 12, 13, 23, 24,
25 and 99. (Code 99, which EXEC does not have, is special to DEXEC only.)

When codes 1, 2, 3, 6, 10, 11, 12, 13, 25, 99 are sent to the remote node , they will be
processed by EXECM (i.e. immediate execute) at the remote node.

Codes 9, 23 and 24 will be processed by EXECW (i.e. execute with wait).

8) SEGLD = aremote version of RTE-M segment loader. It uses RFA calls (DOPEN, DREAD, DCLOS)
instead of FMP calls (OPEN, READF, CLOSE).

9) D65MS = counterpart of D3KMS in 3000 link. It is called when a request is to be sent to another
DS/1000 node.

i) allocates a class # for the request (which will become a “master class #").
i) a LOCK/WAIT on the RES table access resource number, #TBRN.
i) calls #RSAX to add a TCB to the master-request list.

iv) sends the request (and data if any) to the remote DS/1000 node by a CLASS
WRITE-READ to GRPM's class (#GRPM).

v) waits for reply from the remote DS/1000 node by doing a CLASS GET (via subroutine
D65GT) on the "master class #”. (GRPM will write the reply into this class when it
receives the reply via DVAB5.)

vi) de-allocates the “master class #” and removes the associated TCB from the
master-request list.

10) D65AB = called by FLOAD, DEXEC and D65MS to output abort messages for the program that is
using these subroutines if an error occurs. The message format is:

DSXX: [program's name] YYYYYY
* [program’s name] ABORTED ! *

where XX = error code (App. B in Prog. Ref. Manual)
YYYYYY = address within the aborting program where the error is detected.

it then terminates the program by CALL EXEC (86).
Note : D65AB is called only from master-level routines such as DEXEC and only when the

user does not want to process errors himself. It is never called from those master routines
that always require the user to process errors himself such as the RFA subroutine calls.

Optional 1000-1000 Software

REMAT (19, 5) = operator interface for remote RTE/FMGR commands

EXECW (19, 2) a Network Interface Monitor (NIM) that processes DEXEC CALLS 9, 23 and 24 (schedule with wait and

queue with or without wait) from another node.

6

DLIST (19, 2)

PROGL (19, 4)

NDTGN (3, 5)

SGPRP (3, 1)

RMTIO (7, 1)

a Network Interface Monitor (NIM) that services the DL (Directory List) request from a remote node’s
REMAT program by sending the directory list output to the requesting node.

a Network Interface Module (NIM) that services the program down-load request from a remote node.

a utility program that generates a Network Description Table which is composed of Nodal Routing Vectors
(NRVs), one for each node in the network.

a utility program that prepares a RTE-M segmented program which has been relocated by RTMLG, for
loading into a remote RTE-M node by that node’'s APLDR. It can be run in either a RTE-M or a RTE system.

aremote/local version of FMTIO (RTE FORTRAN format I/O) which allows the FORTRAN READ and WRITE
statements to be executed to a remote node. Refer to p. 2-14 in the Network Manager’s Manual for details.
This module should not be generated into the system. Instead it should be relocated on-line using LOADR
or RTMLG to append it to the calling program.

Optional RTE-III Software

LOADR (3,12)

EDITR (19, 6)

RTMLG (3,12)

the relocating LOADR similar to RTE-III's LOADR , except that it relocates directly from binary relocatable
disc files instead of from LOAD-AND-GO tracks. Page size is variable depending on the size of the symbol
table required by the program being relocated.

this version of the EDITR provides editing of a disc file on a remote disc-based node. Page size is a
variable.

the RTE-M LOADR/GENERATOR which is run on a RTE-IIl node to generate a RTE-M system or to relocate
a RTE-M program for a remote node. Page size is a variable.

Optional RTE-M Software

REDIT (19, 1)

SEGLD (7,.5)

APLDR (1, 2)

DSLM1 (7,.025)

DSLM2 (7,.025)

a utility program to be used only on a RTE-M node. It does not perform an editing function itself, but uses
DEXEC 9 to schedule EDITR at the remote node to do the editing. Refer to p. 2-16 in the Network
Manager's Manual for details.

the remote version of the RTE-M subroutine by the same name, which can load a program’s segment from
a disc file in a remote node. It should be used only in a RTE-M node.

the remote version of the RTE-M program by the same name, which can load RTE-M programs from a
remote node.

contains the subroutine MSTAT |, which is the RTE-M version of RTE-FMP’s FSTAT subroutine.
contains dummy entry points for :
APOSN, CLOSE, CREAT, FCONT, LOCF, NAMF, OPEN, POSNT, POST, PURGE, READF, RWNDF, WRITF

This module is required only if the RTE-M node does not include the disc filing system.

Required 1000-3000 Software

QUEX (19, 3)

reads and sends data from/to 3000. Calls DVG67.
2 The heart of 1000-3000 communication *******
2 The counterpart of GRPM in 1000-1000 *******

7

OPERATING SYSTEMS

QUEZ (17, 1) = wakes up QUEX from its CLASS GET suspend when impending input from 3000 is detected by DVG67.

RPCNV (19, 2) = converts DS/1000 replies, going out to a DS/3000 node, to the DS/3000 format and passes it to QUEX to

be sent.

RQCNV (19, 2) = converts DS/3000 requests, coming into the BS/1000 node, to the DS/1000 format and passes it to one of
the Network Interface Monitors (NIMs):
RFAM, EXECM, PTOPM, CNSLM, OPERM.

D3KLB (7, 6) = contains the following type 7 routines (i.e. utility)

1) the file handling routines for a DS/3000 file. The general functions they go through are:

Step # 1
Step # 2
Step # 3

Step # 4
Step # 5 =

a) FOPEN=

b) FREAD=

c) FWRIT =

d) FCHEK =

e) FINFO =

fy FCLOS=

= build front end of request buffer

move caller's parameters to request buffer

send the request buffer to 3000 by calling subroutine D3KMS , which writes the request
buffer to QUEX's class.

wait for reply from 3000 (i.e. via the chain of DVG67—QUEZ—QUEX—itself).

pass the returned parameters/data in the reply back to the caller.

to open a file on DS/3000

to read a record from a DS/3000 file. Additionally in step # 5, the received data are
de-blocked into DS/1000 records.

to write a record to a DS/3000 file. Additionally in step # 2, data from the caller are
blocked into the request buffer.

to check the status of a DS/3000 file.

to get access info (such as record size, block size, record pointer , etc.) and status of a
DS/3000 file.

this routine contains the following subroutines and namesake functions:

CLOSE, READSEEK, READLABEL, WRITELABEL, SPACE, POINT, CONTROL,
SETMODE, RENAME, PELATE, LOCK and UNLOCK.

2) the routines for sign-on and sign-off on DS/3000.

a) HELLO=

b) BYE =

must be called by a user program before initiating any communications with DS/3000. It
sets up communications to DS/3000 and tries to create a remote session on HP-3000.
DS/3000 will reply with the “Session Process #" for the session created. HELLO then
sets it into a TCB which is added 1o the “process #” list.

to terminate communication with DS/3000, causing DS/3000 to release the session.
After sending a “BYE"” and getting an “OK” reply from DS/3000, it removes the TCB with
the process # from the “process #' list.

3) other routines :

a) DSEQT = extension of EQT for DVG67 (to bypass the system allocation, i.e. not using the “X" field

in EQT definition). It contains long term statistics and an event trace table.

8

ORPERATING SYSTEMS

b) POPEN= contains the PTOP master subroutines for DS/3000 as weli as for PTOP to DS/1000.
These subroutines should be used by the master program in order to initiate each PTOP
transaction with the slave program on the other node.

¢) D3KMS= counterpart of the DS/1000 D65MS subroutine. It is called in order to send a DS/3000
request to QUEX. Its functions which depend on the bits set in the control word of the
calling sequence , are a combination of :

i) getaclass # for the request (which becomes a “master class #” within DS/1000).
i) LOCK/WAIT on the RES table access RN #TBRN.

i) add a TCB to the "master-request list” as a new entry.

iv) store the “master class #” into the request buffer as a “FROM PROCESS #.
v) send the reguest to DS/3000 by writing it to QUEX's CLASS (#QXCL in RES).

vi) wait & get reply from DS/3000 by doing a CLASS GET on the "master class #”.
(QUEX will write the reply into this class when it receives the reply from DVGE7).

vii) de-allocate the “master class #" antd remove the associated TCB from the "master-
request list” in RES.

d) HSLC = the logical driver part of DVG67, which resides in Sub-System Global Area (SSGA). It
defines the bisync protocol subset used for DS/3000 communications.

DVGE7 (0,.8) = The physical driver for 3000 link. Interrupts from the DS/3000 link are processed here. It is called from
QUEX in the form of EXEC I/O calls.

Optional 1000-3000 Software

CNSLM (19, 2) handles unanticipated standard list request ($STDLIST) or standard input request ($STDIN) from 3000 ,

such as warning messages from the 3000 operator.

RMOTE (19, 5) = provides a “virtual terminal” to the HP-3000 system.

Reguired “1000-1000 only” Software

DSLB3 (7,.25) = needed only if there is no 3000 link. Contains a dummy entry point, DSEQT , to satisfy UNDEFS (which are
referenced by LSTEN) and a shortened POPEN module which does not contain the PTOP master
subroutines for DS/3000.

Optional DS Software

EXECM (19, 8) = a Network Interface Monitor (NIM) that is required only if its remote nodes are to send DEXEC calls to it.

OPERM (19, 2)

a Network Interface Monitor (NIM) that is required only if its remote nodes are to send RTE operator
commands (via the REMAT program and the DMESS call).

9

RFAM (19, 6)

a Network Interface Monitor (NIM) that is required only if its remote nodes are to make RFA (Remote-File-
Access) calls to it. Page size is a factor of the number of files to be opened concurrently (i.e. the number of
active DCBs) at the node.

PTOPM (19, 2) = aNetwork Interface Monitor (NIM) that is required only if its remote nodes are to make PTOP (Program-

To-Program) calls to it. The PTOP type of communication provides the most basic and efficient communi-
cation among any nodes in a network. A user can design the PTOP programs for each node so that they
can handle the RFA and the DEXEC type of calls without requiring those NIMs at the nodes.

Description of “RES”

“RES” is amodule that resides in the subsystem global area (SSGA) in the RTE system. All DS/1000 modules (except a few
such as RTMLG and LOADR) must access this module. Therefore, they are either type 17 (memory resident and accessing
SSGA) or type 19 (disc/partition resident and accessing SSGA) modules.

The module “RES™ contains the following:

a) #RSAX = a privileged library routine which controls the access to and maintains the node’s TCBs (i.e.,
transaction-control-block) for all current requests and replies.

b) Atable of TCB list-headers (i.e. each item in this table is the starting address of a list of TCBs). The format of each list is
shown in App. C in the DS/1000 Programmer Reference Manual.

All TCBs actually reside in the System Available Memory. Each TCB in every list is 5-words long and is single-
directionally linked to the next TCB in the list. First word in a TCB contains the address of the next TCB. First word in the
last TCB in a list contains a zero to mark the end of that list.

There are four major types of TCB lists.

1) #PNLH = the DS/3000 Process Number List Header
Each TCB represents a current LOGON (i.e. HELLO) to DS/3000. When a LOGON is established at
the 3000 system, it gets a process number assigned to it, which is kept in Word 3 of the TCB.
Within this list , master-requests and slave-replies are intermixed (i.e. not kept in separate lists as in

the DS/1000 link).

Refer to section C-4.1 in the Network Manager's Manual for format description.

2) #MRTH = the DS/1000 Master-Request List Header
Each TCB represents a master-request currently “unreplied” (i.e. it has not yet received the
associated slave-reply from the other node).
Refer to section C-4.2 in Network Manager's Manual for format description.

3) #STxx = the DS/1000 Slave-Reply List Headers

“xx" stands for the type of slave-replies that are linked to this list. The types (i.e., stream types)
are assigned as follows:

01 for DLIST

02 for CNSLM (operator requests for DS/3000 link)
03 for EXECW (for DEXEC calls with WAIT)

04 for PTOPM

05 for EXECM (for DEXEC calls without WAIT)

10

c)

4) #NULL

06 for RFAM
07 for Operator requests (for DS/1000 link)
09 for PROGL

At present, stream type 00, 08 and 10 are unused.

Each TCB in these lists represents a slave-reply that is to be sent to another node. A TCB will be
removed from its “slave-reply” list when the reply has been "sent” by either a CLASS WRITE to
GRPM's class (#GRPM) for DS/1000, or to RPCNV's class (#RPCV) for DS/3000 reply.

Refer to section C-4.3 in Network Manager's Manual for format description.

the Null List of Available TCBs

The 5-word TCBs are linked together to form a pool of unused TCBs. This list is first allocated and
initialized by LSTEN when it is initializing the node. The other lists are empty, i.e. the list-headers
#PNLH, #MRTH and the #STxxs all contain zero.

As requests and replies are needed, TCBs are allocated from the front of the null list to the
appropriate lists. As requests and replies are successfully completed, their TCBs are returned to

the end of the null list.

When the null list is exhausted (i.e. when #NULL contains a zero) at a node, it results in a
local-busy condition at that node for any new incoming request.

A table of nodal entry points that are initialized by LSTEN (with parameters from the operator) when LSTEN is run for
the first time at the node, or set by LSTEN at a later time as modifications.

1) #FWAM
2) #SAVM
3) #TBRN
4) #QRN

5) #GRPM
6) #QCLM
7) #BUSY

the starting address of the block of SAM that LSTEN requests from the system for the storage of
TCBs , TST and NRVs.

the number of words in the SAM block.

the resource number to access the TCB lists.

Prior to calling #RSAX, a DS module must call RNRQ on this resource number with wait and
LOCK, which may cause it to be placed in state 3 (suspended) when there is no TCB in the
#NULL list at the node.

the resource number for quiescing the node.

It is set by LSTEN when the operator enters the “/Q" command.

the class number that GRPM always does a CLASS GET on.

Any transaction to be sent to a DS/1000 node is passed to GRPM by doing a CLASS WRITE to
#GRPM such as by D65MS and by RTRY.

QCLM's class number. Any communication error detected by GRPM and which it does not “RTRY”’
is sent to QCLM to be printed on the system console. This avoids having GRPM to be I/O bound for
error processing.

the number of active TCBs at the node, i.e. the number of TCBs that has been taken out of the
#NULL list and been placed into other lists.

11

OPERATING SYSTEMS

8) #MSTO

9) #SVTO

10) #RTRY

11) #WAIT

12) #SWRD

13) #BREJ

This counter is managed by #RSAX routine. It is checked by QUEUE just before QUEUE termi-
nates. If there are still some active TCBs, QUEUE terminates at once. If there is no active TCB, the
node might be “quiesced” and QUEUE performs an “insurance check”. It calls RNRQ to globally
lock and clear the quiescent resource number #QRN. If #QRN is not locked to anybody, this is a
harmless call and QUEUE will terminate at once. However, if #QRN is locked, the node is
quiesced. QUEUE will be suspended at state 3, waiting for #QRN to become unlocked. During
that state, DVAB5 receiving transmission from other nodes will not be able to schedule QUEUE
(QUEUE not dormant) and therefore rejects those transmissions with the “REMOTE-BUSY” error to
the originating nodes.

the Master-Request Timeout Value.

It is applied to all master-requests to be sent to a node that does not have a “master-request
timeout override” specified in its NRV entry.

Its default value (45 secs)is “hard coded" into LSTEN. It can be changed by the /T command in
LSTEN and a new value is entered for “MASTER T/O = ".

(The master-request timeout override is specified by the answer to “CPU#,LU, TIMEOUT ?°
guestion in LSTEN's initialization of the node or NDTGN's building of the Network Description
Table. It is stored in the second word of the NRV entry. Refer to section C-4 in Network Manager's
Manual for format description.)

the Slave-Reply Timeout Value.

Its default value (30 secs) is “hard coded” into LSTEN. It can be changed by the "/T" command in
LSTEN when a new value is entered for “SLAVE T/O = ".

the class number on which RTRY always does a CLASS GET.

When a transmission (request or reply) has been rejected by the "REMOTE-BUSY" error at the

remote DS/1000 node, and provided #BREJ is not zero, GRPM passes this transmission buffer to
RTRY by re-queuing it to #RTRY. RTRY brought out from its suspend state 3, will attempt the

re-transmission after a delay time period.

the “"REMOTE-QUIET WAIT” time in seconds.

It is specified by the “/T" command in LSTEN. When a “REMOTE-BUSY" error persists at a
DS/1000 node and the “Remote-busy-retries. #BREJ" has been exhausted, the calling

program at the local node can be optionally placed on the time list with a delay specified by
#WAIT is zero, the calling program is not re-scheduled and “DS08" error is determined at once.

the node's security code.

It is input by the operator at LSTEN's initialization of the node. LSTEN uses it to check operator's
input for the "/Q, /T and /R commands. It is also used by REMAT when REMAT processes the
“SW"” command.

the retry count for “REMOTE-BUSY” reject.

Its default value (3) is set by LSTEN. It can be changed with the “/T" command in LSTEN when a
new value is entered for the "REMOTE-BUSY RETRIES [1 TO 10] 7" question.

The count is actually stored into bits 8to 11in #BREJ. When it is used, it is set into the first word of
a request/reply buffer by either GRPM, D65MS or EXECM when they are setting up this buffer.

12

14) #RPCV

15) #RQCV

16) #LU3K

17) #QZRN

18) #QXCL

19) #TST

20) #RFSZ

OPERA

It is counted down by GRPM on the receiving node which has the "REMOTE-BUSY” condition and
stored back into the transmitted buffer , which is sent back to the originating node. When it reaches
zero and the originating node detects it, “DS08" error is returned to the user.

the class number upon which RPCNV always does a CLASS GET.

The Network Interface Monitors (NIMs) send replies to both DS/1000 and DS/3000 nodes. When
the reply is intended for a DS/3000 node, the NIM re-queues the reply buffer from its class to
#RPCV in order for RPCNV to GET the buffer and convert it to DS/3000 format.

the class number upon which RQCNV always does a CLASS GET.

QUEX and D3KMS both do CLASS WRITEs to #RQCV to pass the request buffers received from
DS/3000 in order for RQCNV to convert them into DS/1000 format and pass them to the proper NIM
to be serviced.

the logical unit number for the DS/3000 link.

It is set by LSTEN in its initialization of the node when "“LLU OF HP 30007" is answered. It is used
in all EXEC calls for I/O to the DS/3000.

the resource number by which DVG67 wakes up QUEZ.

It is initially locked globally by QUEZ and passed to DVG67 as one of the parameters in an EXEC
call for “special read” by QUEZ. QUEZ then terminates , but is scheduled by QUEX later and
repeats the LOCK/WAIT on #QZRN. At that time, QUEZ will be suspended in state 3 because
#QZRN is still being LOCKED.

When DVG67 receives an end-of-transmission from DS/3000, it uniocks #QZRN, which takes
QUEZ out of suspension. QUEZ then does a CLASS WRITE of zero length record into #QXCL
(QUEX's class) to bring QUEX out of its CLASS GET suspension. QUEX can then process the
received transmission from DS/3000.

QUEZ LOCKs #QZRN to itself again and then terminates. When QUEX completes its processing, it
schedules QUEZ to put QUEZ back into suspend state 3 before going back to its own CLASS GET
again.

This process is repeated for every DS/3000 transaction through the use of #QZRN and #QXCL.
the class number on which QUEX always does a CLASS GET.

A transaction (request or reply) which is to be sent to DS/3000, is passed to QUEX by a CLASS
WRITE to #QXCL. This transfers the request/reply buffer and the data buffer, if any, to QUEX.

the Header for the DS/3000 Transaction Status Table.

This is a two-word header. The first word contains the starting address of the Transaction Status
Table and the second word contains the number of words in the Transaction Status Table.

the number of “OPEN" RFA files at the node.

It is set by the answer to “INPUT # OF FILES:" in LSTEN's initialization. It is used only by the
multiple DCB version of RFAM when it initializes by building up the DCB directory list “RFAMD”
(each entry being 9-words long) in the remaining portion of RFAM’s memory partition. If the
number specified by the operator exceeds the available memory, a message will be output to the
system console and #RFSZ will be set to the maximum value allowed for the memory available.

13

OPERATING SYSTEMS

21) #CNOD

22) #LNOD

23) #NODE

24) #NCNT

25) #NRV

= the Current User Node number.

It is applicable only when a DEXEC call from another node is being processed by EXECW (i.e.
stream type 3).

It contains the node number from which the DEXEC call originates. (The source node is in word 3 of
the master-request buffer received.) Since the master-request is to be executed with wait, the
information is saved in #CNQOD.

When the master-request is successfully executed, #CNOD is reset to -1 by EXECW, indicating no
more active remote execute-with-wait request at this node.

the Down-load node number.

This is special only to the DEXEC call for remote-schedule of APLDR for down-loading. it contains
the node number from which an RTE-M program is to be down-loaded.

the node number of the local node.

It is set by the answer to "LOCAL CPU # 7" in LSTEN's initialization. It is set into word 3 of every
request and reply buffer that is to be sent to another DS/1000 node. It is used in the following
modules:

EXECW, OPERM, DLIST, REDIT, PTOPM, RFAM

the negative number of NRVs (Nodal Routing Vectors).

Itis set by the answer to “NUMBER OF NODES 7" in LSTEN's initialization. Each NRV is 2-words in
length. Itis used in GRPM, RTRY, D65MS and EXECM as a loop counter for searching through the
NRV table for the logical unit that corresponds to a specified node number.

the starting address of the NRV Table.

The NRV table is in SAM and.is allocated as part of the large SAM block that LSTEN has requested

during its initialization. The rest of this SAM block is used for the TCBs and the TST (which is for
DS/3000 link only).

14

OPERATING SYSTEMS

ADVANCED DEBUGGING TECHNIQUES

by Lyle Weiman

In a previous article, the use of DBUGR was described for debugging programs. In addition, it was mentioned that interactive
debugging can introduce delays which may change the characteristics of the problem, or it may even vanish entirely. Bugs of
this nature are extremely hard to find, but a few techniques have been developed to aid in finding them. This article describes
some of them.

The Aborting Program Freezer

Often, the ‘bug’ you're looking for manifests itself by causing a program to commit some mortal sin and be aborted by RTE, or
can be forced to do so in some clever way. In this case, RTE washes its hands of the offender in very short order. Except fora
cryptic message on the operator console describing the error, no trace is left of the program, and therefore it is very difficult to
determine what really caused the problem in the first place. There is a program in the HP Contributed Library (LOCUS) which
can help you here. It's called ‘ABDMP’ (for the Aborting Program freezer), and gets its name because it “freezes” a program in
its partition on any abortive error, rather than let RTE terminate it. You can perform a “post mortem” examination on it
interactively, using the features of DBUGR to trace lists, interpret instructions and data in the most useful fashion. This program
has been tested only on RTE-IV, but could probably be modified to work in RTE-II/1Il fairly easily.

‘ABDMP" allows you to establish a list of programs which are to be “frozen” should they be aborted for any reason, at any time. It
doesn't matter how infrequently the error occurs: any abortive error causes the “freezing” (normal terminations are not
trapped). Should any other program abort which is not in the list, RTE is allowed to take its own action. Alternatively, you may
specify that all programs are to be added to the list. This is useful when the error seems to cause various programs to abort at
random, or programs are run at different times using different ID segments (or different names).

It is assumed that the reader is familiar with the DBUGR Utility of RTE-IV, described briefly in a previous Communicator article.
You may wish to refer to that article to refresh your memory.

The main program is called 'ABDMP’. You run it, and specify the name of one or more programs which are to be “frozen” for
your examination, should they be aborted by RTE. ‘ABDMP’ inserts a "patch” into the RTE System Message Processor, SERMG,
s0 that some “special” code can be executed first. $ERMG is entered whenever RTE wants to abort a program abnormally
(Memory Protect, Dynamic Mapping, IOxx errors, etc.). If you are unfamiliar with this routine, review the Communicator article,
“Know Your RTE" describing program aborting. The “special” code is contained in the module ‘SPATC’, supplied with
‘ABDMP’, which compares the ID segment address of the currently-executing program (which is the one being aborted,
usually) with the IDs of all programs in its list. The exception is when an operator aborts a program.

In RTE-IV, the instruction following the entry point to $ERMG is a NOP.

‘ABDMP" allows you to add or delete programs from this list, or print all programs in the list. Any program which appears in the
list will be “frozen" if it aborts; that is, it will be locked in its partition, and you will be given a chance to examine it. You will have
all the power of the DBUGR utility to examine the program, but you can't execute or patch any part of it. Furthermore, you will be
running in one partition, and examining another, one page at a time. If you wish to examine a different page, you must exit
DBUGR and use ‘ABDMP' to set up the map properly and copy another page, then re- enter DBUGR. You exit DBUGR by
typing the two keys 'Escape’ and ‘P'".

After examination, the aborting program is "unfrozen”, and RTE completes the process of aborting it (releasing its resources,
etc.)

Alternatively, you can specify that any program is to be “frozen” when it aborts (use -1 instead of program name for the Add
Program and Delete Program commands).

You may also dump the program to a lineprinter, mag tape, etc., for off-line analysis.

15

One of the modules in this package, ‘SPATC’, must be generated into the system. When you run the main program, ‘ABDMP*, a
call to this routine is made to be sure that the patch in $ERMG has been inserted. This routine compares the ID segment
address of the currently-executing program with those in its list. If no match is found, $ERMG is re-entered, after simulating the
overlaid instruction (if any), and the normal RTE program-abort path is taken. If a match is found, then $LIST is called to place
the program in State 3 (General Wait). The ID segment is “doctored” so that no event can take it out of this state (itis placed in
its own “wait” queue), the “memory-lock” bit is set, and other information is stored in the remaining three locations in the 1D
which specifies the reason the program was aborted (for this reason, you cannot examine the ‘temporary’ words of the ID
segment to determine the EXEC call which the aborted program last executed). #LIST is called to schedule ‘ABDMP’. $SERMG
is by-passed, and return is made to its caller (i.e., RTE does not abort the program).

When ‘ABDMP’ is scheduled, it asks for operator input. The lists may be updated, listed, etc.
SCHEDULING “ABDMP‘
#0N ,ABDMP , <lutty>, <lulist>

where <lutty> = lu of your terminal

<lulist> = list device for program dumping
(default=6).

The program prints its name, and asks you for commands.
ABORTING PROGRAM DUMPER

Commands are:

AP,PROG = ADD PROGRAM "PROG"™ TO LIST OF PROGRAMS
DP,PROG = DELETE PROGRAM *"PROG" FROM LIST OF PROGRAMS
PROG = PROGRAM NAME, OR -1 TO FORCE DUMP ON ALL ABORTS
LI = PRINT LIST OF PROGRAMS
EX = EXIT SETUP PHASE, WAIT FOR PROG TO BE ABORTED
DU,PROG = DUMP PROGRAM [MUST BE IN MEMORY])
NOTE: *“LIST OF PROGRAMS"™ REFERS TO LIST OF PROGRAMS

TO BE DUMPED, IN CASE THEY ABORT.

Any illegal command will yield the message ILLEGAL COMMAND.

The DU, PROG form can be used to dump or analyze a program currently in any partition which has not been aborted. It is
preferable to place the program in a suspended state before doing so, however. Exiting 'ABDMP’ after examining a program
using the DU,PROG command will not abort the program.

When you terminate (EX command), the program scans ID segments for programs whose ID segments have been doctored as
described above. If none are found, the program waits for ten seconds, then repeats the search. This is repeated forever, thus
guaranteeing that no aborted program will ever be missed, no matter how many are aborted, in which order, or what ‘ABDMP’
was doing at the time. To re-schedule the main program (to add, delete or list programs), simply set its “break” bit, and wait for
it to be re-scheduled by RTE. Alternatively, you may abort it and re-schedule it, using "NOW™

+(0F ,ABDMP ,1 (remove program from time & scheduled lists)
«0ON,ABDMP ,NOW, 1

16

When a “frozen” program is detected, ‘ABDMP’ prints the following message:

PROGRAM amaaa ABORTED, xxnn 000000 PRIORITY ddddd, PRIMARY ENTRY POINT oooocoo TYPE d
A=000000, B=ooo0000, E/O=c00000

LOW MAIN =000000, HIGH MAIN + 1=000000

LOW BP =p00000, HIGH BP + 1 =o000000

PARTITION # dd, SIZE =ddddd

where aaaaa = program name, xxnn = 4-character reason (MP ,1007, etc.) 000000 = octal number ddddd =
decimal number

PARTITION # dd is the partition number in which the program was running when it was aborted. Size is the size of the
program in pages.

"ABDMP’ enters the “examine program” phase, reminding you with the prompt

EXAMINE ABORTED PROGRAM
COMMAND?

Entering ?? will print the following menu:

DISPLAY COMMANDS ARE:
DI,LU = DISPLAY CONTENTS OF ABORTING PROGRAM’S PARTITION
AD,ADDR=SET UP MAP SO THAT <ADDR>’S PAGE
MAY BE EXAMINED WITH DBUG
DB =CALL DBUG (USUAL DBUG COMMANDS CAN BE USED
EX =EXIT. ABORTING PROGRAM IS TERMINATED & THIS
PROGRAM WAITS FOR ANOTHER PROGRAM TO ABORT

The DI command is used to print the program on an output device for later analysis. The printout LU is optional. If not supplied,
the printout LU given as the second parameter of the schedule request will be used.

The AD command is used to set up for use with DBUGR. ADDR is the address you wish to examine. The program sets up one of
the map registers it doesn’t use to contain the physical page number corresponding to the aborting program's logical address
given by the address specified. ‘ABDMP’ reports the first and last legical address of the aborting program which can be
examined, and the locations at which they may be viewed ((ABDMP’ copies one page from the aborting program'’s patrtition, so
that DBUGR may be called. This allows only one page at a time to be viewed). You should then enter DBUGR (DB command),
define a symbo! to be the address used to access the actual address you want, and reference all data relative to this point. To
access data on a different page, exit DBUGR (escape P), enter the “examine aborted program” command phase, set up anew
address with another AD command, and re-enter DBUGR. All symbols.you defined will still be defined.

The PARSE routine (described in the RTE Reference Manual) is used for decoding all input, except for those commands
entered directly to DBUGR. Its rules determine syntax. Note that octal addresses must be suffixed by “B".

The program requires at least one extra page of memory address space to be available when it runs. It uses this extra page of
address space for accessing memory in other partitions. That is, if the program requires 9 pages, it will run in a 9-page partition,
but it cannot be run if loaded at any address higher than 60002(8).

The ‘SPATC’ module must be generated into the system in Table Area . All other modules are part of the main program,
‘ABDMP". Priority is not critical, but the program type must be 3.

17

OPERATING SYSTEMS

(XXX R R ERE R LR R K]

PRINTOUT

FORMAT

L AX XX E RS RS SRERRRESSR RS R X

If you elect instead to print the program for later analysis, the format is as follows:

BASE PAGE

<addr>
<addr>
<addr)>
<addr>

etc.

000000
000000
000000
000000

000000
000000
000000
000000

INDEX REGISTERS(X,Y)

000000

<addr>
<addr>
<addr>
<addr>
<addr>

etc.

000000

000000
000000
000000
000000
000000

000000
000000
000000
000000

PROGRAM

000000
000000
000000
000000
000000

SAMPLE EXECUTION

:RU, ABDMP

000000
000000
000000
000000
000000

ABORTING PROGRAM DUMPER

COMMAND?(??=HELP)

LI TEST
COMMAND?(??=HELP)
EX

000000
000000
000000
000000

000000
000000
000000
000000
000000

000000 000000 000000 000000 aaaaaaaaaaaaaaaa
000000 000000 000000 000000 A2aaaaaaaaaaaaaa
000000 000000 000000 000000 aaaaaaaaaaaaaaaa
000000 000000 000000 000000 a2aaaaaaaaaaaaaa

000000
000000
000000
000000
000000

000000
000000
000000
000000
000000

Schedule program:

Program signals you:

000000
000000
000000
000000
000000

Program asks for directions:

000000
000000
000000
000000
000000

Operator asks for list of programs “armed” for freezing.
Sample program “TEST"
is only program in list. Program asks for new command.
Operator terminates.

18

OPERATING SYSTEMS

Note: ‘ABDMP’ now continues to scan [D segments at 10-second intervals, searching
for a “frozen” program. You may abort it at this time, since there are no “frozen”
programs as yet. When RTE RTE does abort a program, ‘SPATC’ will be sure
‘ABDMP’ is scheduled. Thereafter, it may not always be advisable to abort 'ABDMP",
particularly if programs are being aborted frequently. However, the worst that can
happen is that a program will be aborted and ‘ABDMP’ will be aborted before it
detects the program. The very next program to be abornted will cause ‘ABDMP' to be
re-scheduled, and it will find both “frozen” programs (assuming there remains a third
partition in which to run 'ABDMP’ — two will be tied up in this case).

Operator causes sample program TEST to generate a memory-protect violation (see
TEST's listing)

07>BR,TEST
‘ABDMP’ detects program “TEST” has been “frozen”.
PROGRAM TEST ABORTED, MP 30006 PRIDRITY 5000,
PRIMARY ENTRY POINT 30002,TYPE 3

A=177777, B= 10000, E/sO= 77776
LOW MAIN= 30000 HIGH MAIN + 1= 31122

LOW BP = 2, HIGH BP + 1 = 13
PARTITION # 3, 1ST PG#= 81, SIZE= 22
EXAMINE ABORTED PROGRAM Operator is asked to set up map, etc.
COMMAND?
AD,30000B Operator sets up map to examine first program page.
Note that address is specified in octal, with “B"
suffix,

‘ABDMP’ responds:

PHYS.PG# 82 LOGICAL ADDRESS 30000 THROUGH 31777 CAN BE ACCESSED
STARTING AT LOCN 33346 THRU 35345
EXAMINE ABORTED PROGRAM

COMMAND?
DB Operator enters DBIJGR.
START DBUGR DBUGR responds.

Note that DBUGR has its own syntax rules, different from PARSE and everything else
in RTE. Operator sets symbol "P” to start of page for examining aborting program.
First location is examined, and found to contain a JSB instruction.

33346¢P: P/ JSB 10,1

Next locations are examined using Control-J (linefeed).

P+1/ IOR S =30005 P+2/ I0R 35 =30035

P+3/ SSA =2020

P+4/ HLT 77 =102077 (Note that the memory-protect violation instruction appears to be 2 locations ahead
of the address reported by RTE. This will be true of all addresses in the first program
page, because RTE begins loading the program two locations higher than the page
boundary, in order to save space to save the X and Y-register. ‘ABDMP' does not
correct for this.

P+S/ LDX

P+6/ I0OR 1070 =31070

P+7/ LDY \P Operator exists DBUGR by hitting Escape P.
END DBUGR DBUGR responds.

19

ING SYSTEMS

‘ABDMP’ asks for new set-up commands.
EXAMINE ABORTED PROGRAM

COMMAND?
EX Operator is finished.
TEST ABORTED *ABDMP ¢ finishes up the “abort" process on the progr by sending an
"OF, <program name>,1" message to the system message processor. Its partition
and all other resources are released
Operator examines status of active programs.
07>0ON,WHZAT
8:42:24:510

(44222222222 222 2 2 R R X R Z R R R RE R R RSN E R R R R R FR R E R FE W R R ggrgrargry-y

PT SZ PRGRM,T ,PRIOR#DRMT+#SCHD#1/0 #WAIT+MEMY+DISC+OPER * NEXT TIME =«
[Y R Y Y R N N T I T I I I,

0 #+ RPN+1 +00010 swsss 1

0 #+ WHZAT+1 «00001 s#ssses 1

1 7 FMG07+3 200090 s#ssssssssssssss 3 ABDMP

2 8 ABDMP#3 #00030 0 #ssssssssssssssssssssstnsnnsnnssnns 8:42:31:450
R R AR BB B R BB BB R BB BN R BB BB B B R B BN R BN B BB R PR BB R BB BB R R BRB RN RS
DOWN LU’S

[N I I I
DOWN EQT’S

I AZ 22X LR R 2R R AR AR 2 Z R Z A2 RS2SRRSR X RS RS ES SRR ESRZE RN S X Y X}

8:42:24:580

Note that ‘ABDMP’ is in the time list, but TEST has been aborted.

WARNING WARNING WARNING WARNING WARNING WARNING WARNING

WARNING WARNING WARNING WARNING WARNING WARNING WARNING

This routine contains no protection against “phantom ID segments”, that is, ID segments which are created by FMGR when a
type 6 (saved program) file is run. These are blanked after the program completes. When the program is run again, # may
appear in another ID segment, not in the list kept by ‘SPATC'.

When a program which is in ‘ABDMP’s list is aborted, it is frozen in its partition. It is therefore advisable to examine the program
quickly, then allow it to be aborted. Dumping the program’s partition contents to a high-speed device may be the only realistic
way to avoid tying up a valuable partition for interactive analysis, but this hampers you'in that instructions are not decoded for
you.

If a number of programs are aborted at once, the fact that they are all frozen in different partitions may prevent ‘ABDMP’ from
running. In this event, it may be advisable to modify the source so that a copy of the program is “canned": that is, stored in a
disc file immediately. A separate program may be used to analyze the program using DBUGR. This second program can be
cannibalized from parts of ‘ABDMP".

20

 OPERATING SYSTEMS

Computer
Museum

The code is now in the Contributed Library, under the name ‘ABDMP’,

LIST DF PROGRAM MODULES
&ABDMP (FORTRAN) MAIN PROGRAM
4CMDIN (FORTRAN) COMMAND INPUT INTERPRETER (SUBROUTINE)
4ABRSY (ASSEMBLY) PROGRAM LISTER, ENTRY & DELETE ROUTINES
&DMPRN (ASSEMBLY) SUBROUTINE FOR PHYSICAL MEMORY PRINTING
&SPATC ASSEMBLY CODE FOR SYSTEM PATCHC(LOADED WITH SYSTEM AT GEN TIME)
&MSGFR (ASSEMBLY) OUTPUTS CANNED MESSAGES FOR FORTRAN (FRMTR ELIMINATOR)
&4TEST (ASSEMBLY) TEST PROGRAM

You may not ever reach the breakpoint. Although exasperating, this, too, is helpful information. Move it somewhere else. Try
again. Just be sure that you know in advance what you'll be looking for when you get there, or you may reach a breakpoint, then
realize this tells you absolutely nothing.

There are utilities for dumping an entire system at the point of a crash, and printing the results after you boot the system up
again (these almost always require a mag tape, by the way). The prospect of examining 32K or more of octal printout may not
appeal to everyone, but you can usually focus pretty quickly upon what is happening simply by going through the system
tables. If you know what they're supposed to look like, you can tell which one(s) have been trampled upon. One such dump will
leave too many possibilities, so don't expect too much. You get your most valuable information from repeated dumps, just like
moving pictures, one foreach crash, perhaps even one or two while the system is working for comparison. You will then be able
to reduce the possibilities considerably, although not necessarily to any kind of definitive answer yet. For example, you may find
that the problem occurs whether or not certain other programs are scheduled, whether or not certain drivers are active, whether
or not SAM is relatively empty or nearly fully-allocated, and so on. All of this is useful information because it helps to eliminate
possibilities.

Another technique which is sometimes useful is to “patch” a frequently-entered RTE system routine, such as $(RT or $XEQ or
$CIC (you'll need to be VERY careful on this one) so that you halt if the condition you're looking for has occurred. You can then
list all programs in the active lists, determine their states, and so on, by going through the system lists. Since the system map
will be enabled in this case, you don't have to worry about it. This technique has limited use because the state of the system may
have changed too much to know what it was upon entry to $IRT, and it certainly requires a thorough understanding of RTE.

A very useful, very quick way to locate mapping problems is to look at the maps (system, user and the two DCPC maps). These
should have the same values for pages 1 through about 3 or so, depending upon the system. There should be a discontinuity in
the user map at the page corresponding to the user program’s load address. Page 0 should contain the physical page number
immediately preceding this point. In RTE-IV, there will be another discontinuity corresponding to the driver partition. You can

determine the particular driver which was being executed from the EQT pointers on the base page.

For some problems, particularly the kind which don't seemto make sense, aren't repeatable, or the failure shows up in anumber
of different ways, it can be helpful to define the boundaries of the problem, that is, the various circumstances under which it is
known to occur. Ask yourself questions like, "What is the same in all cases? Does the system need to be heavily loaded, or at
least some particular resources such as SAM, DCPC, etc., or does it occur for various loadings? What programs are always
present? Did the problem suddenly show up? Was the system working under these conditions before some change was
introduced (never mind that you KNOW that this change couldn't possibly affect the problem. Very often, it turns out that there is
an obscure dependence)? Try to isolate it into the simplest possible set of conditions, and then ask yourself what could cause
such a failure under these circumstances?” Do what you can do to eliminate as many of these possibilities as possible.

For some problems, particularly applications where a transaction enters the system and undergoes a series of processing

stages, it can be helpful to add an “audit trail,” that is, every transaction is written out to disc or mag tape, complete with

time-of-day, the name of the program or subroutine and the state of the transaction. You then trace backwards to find the one(s)
which weren't processed properly, and then generate the same transaction types to determine why they went wrong, narrowing
in on the problem and printing more helptu! information with each pass. It will not be helpful to print everything about every
transaction, you'll be unable to see the problem for all the printout. This type of debugging tool may prove useful many times,
even well after the system has been “"commissioned,” so it pays to keep it around and do a good job of documenting it.

21

You may find it useful to enlist the aid of hardware devices to help you. If communications links are involved, you may want to
use a communications analyzer (the usefulness of these devices is limited to communications links which use a standard
protocol, so determine this first). A hardware device which checks the memory addresses and halts the computer when a
cernain address is accessed is called a 'hardware breakpoint”, which you may be able to wire up quickKly if you understand the
computer well enough.

There are no generalities here. This is, for the most part, unblazed trail. Many people have passed this way, but they’ve all gone
in different directions without marking the paths. it's important to realize why this is so, because it's a clue to the state of mind of
those who've gone before, and likely yours when it happens to you. You're really tuned into the problem, often not consciously
aware of why youtake each step, but looking back later you see the progression was strikingly rational. This is by way of saying
that there seem to be no “cookbook” procedures yet. Thie most successful practitioners are artists, not scientists, and they work
on a level which is a curious blend of instinct and scientific training. Therefore, don’'t be worried if you feei you don't know how to
proceed when something like this happens. Just use your head, dig in and get started. You won't find the answer any other way.
You're only really defeated when you start believing in magic.

22

GENERATING A MINIMAL RTE Il SYSTEM

by John BlommersiGerald Green
Defence Research Establishment Pacific
Victoria, British Columbia

From time to time, the RTE Il user has been faced with the LOADR error LO3 - memory overflow. This fqrced the userto rledupe
the size of this program or to restructure it using overlays. Neither alternative is particularity satisfying. Another choice is to
generate a system that takes less memory, leaving more space for programs. Of course, you will sacrifice some features when
you do this.

To produce a minimal RTE |i system, perform some or all of the following steps, depending upon requirerments:

1. Remove all drivers not required, but keep DVR0OO (or DVR05) and DVR31 (or DVR32, according to disc type).

2. Delete all EQT entries not needed, but keep one for the console and one for the disc.

3. Remove the power-fail software DVP43 and AUTOR. Note that AUTOR can be stripped down so that it merely reports a
simple “POWER FAILED" message using an EXEC call instead of a FORTRAN WRITE using the formatter (as it currently

does).

4. Minimize the number of ID segments (short and long), number of I/O classes, number of resource numbers and number of
LU Mappings..

5. Keep the number of entries in the device reference table as small as possible (saves a few words).

6. Move all /O devices to be used to high priority slots, freeing more base page. Be sure no devices corresponding to
undeclared trap cells can interrupt.

7. Delete PRMPT and RPN, thus eliminating the Multi-Terminal Monitor capability.
8. Delete the spooling modules: SMP, SPOUT, JOB, GASP, EXTND and DVS43.

9. Make D.RTR background disc resident. Thus, there is no foreground partition at all. Only the background partition remains.
Eliminate $$CMD.

10. While generating the minimal RTE Il, specify LINKS IN BASE while relocating the operating system, and LINKS IN
CURRENT for the background programs. It turns out that (in the minimal system) the lack of base page is not a problem. By

specifying base page links for the system, main memory is maximized. Each program, of course, reuses the same area of
base page.

11. Load only LOADR, FMGR and D.RTR at generation time and leave one ID segment available for user programs. If the user
suddenly needs an ID segment, he may SP the program holding the ID segment and OF the program to free it.

j2. Some System Available Memory (SAM) must be allowed (say 500 words) between the system and the background
partition. Respond with a zero to all generator questions regarding moving boundaries except for the last such question.

13. Eliminate all buffered I/O and don't use CLASS I/0, since these require SAM. Do this at generation time because without
$$CMD, the LU and EQ commands will not be recognized.

By using all of the techniques described above, it is possible to obtain a background boundary of 24000B with base page links

starting at 543B and a SAM of 1K. This is approximately 22 pages of main memory in a 32K computer, more than twice the usual
size in a typical system.

23

OPERATING SYSTEMS

SPOOLING IS EASY WITH HIGH-LEVEL INTERFACE

by Jim Bridges

This article was suggested by a memo sent to us by T.D. Chase and P.K. Stock of Bell Labs in Holmdel, New Jersey. The
concepts expressed have since been incorporated into a much more complex piece of software in use at Bell.

The spool subsystem of the HP-1000 disc-based systems provides a means to associate a disc file with a logical unit (LU)
which can be treated as if it were, for example, a magnetic tape drive. The disc file can then be handled as if it were a file on
magnetic tape. All the usual magnetic tape commands may be used: rewind, backspace, etc. Once the association (or link)
between the LU and the file is set up, the somewhat complex procedure of disc file handling is traded for the simpler orientation
of reading and writing from/to magnetic tape.

HP provides two methods for establishing the link between a file and a spool LU:

1. The program may be run under batch mode, in which case the use of spooling is transparent. That is, the association
between the file and the spool LU is made outside the program.

2. The program may deliberately make calls to access the spool subsystem. The association between the file and the spool
LU is made deliberately by the program in order to simplify programming.

This article makes a contribution in both cases. It extends the capability offered in batch mode to any copy of FMGR operating
in conversational mode and it provides a simpler calling sequence to the Spool Monitor Program (SMP) provided by HP.

In order for the procedures described below to work properly, the system manager must have initialized the spool subsystem
with GASP,

Transparent Operation

Let's take, for example, the use of the assembler in an RTE 11 system. We would like to input source from a file and output the
relocatable to a file without using the LS (logical source) or the LG {load and go) areas of the disc. Therefore, we need two spool
LUs. To automate the procedure we will use a transfer file as follows:

:RU,SGET, 4PROG: : 254
:CA,8,1P
:1F,1P,LE,0,5
:RU,SGET%IPROG: : 254
:CA,9,1P
:1F,1P,LE,0,2
:RU,ASMB, 86, 0G, 96
:1F, ,EQ, ,1

:DP,SPOOL FAILURE
:RU,KS,86G

:RU,KS,96

The program SGET associates the file with a spool LU (sets up the linkage) and program KS releases the spool LU. If the spool
set-up is successful, the number passed back in global 1P is the spool LU. To release the spool LU, the same number is passed
to program KS. In between the two program calls, the associated LU may be used to access the file as if it were on a magnetic
tape.

In a conversational mode, for example,
:RU,SGET, 4PR0OG: : 254
:DP,1P

<spool LU number displayed here>

24

. E | Tﬂ YST Ik

Spooling from FORTRAN Programs

The assembly language subroutine shown at the end of this article has two entry points which may be called from FORTRAN
programs. To associate a file with a spool LU,

CALL FILE CILU,INAM,ISC,ICR,IDISP)

ILU = Spool LU returned by subroutine
INAM = File name to be associated with spool LU
I1SC = Optional file security code
ICR = Optional cartridge reference number
IDISP = Optional disposition flag (default = 23B)

To release a spool LU,
CALL FDONE CILU)
ILU = Spool LU assigned by SGET
The default setting of the bits in IDISP is exactly the same as used by the program SGET.

For example, suppose we want to write a program which uses file “INFO” for output and references it using formatted WRITE
statements in FORTRAN. The outline of the program would be:

FTNA,L ...,
DIMENSION INAME(3)
DATA INAME/2H'"I ,2HNF ,2HO0 /
100 CALL FILE (LU, INAME)
200 WRITE (LU,1000> A,B,C
1000 FORMAT (*A,B,C="3F6.2)

300 CALL FDONE (LW

Conclusion

The programs SGET, KS and the FORTRAN-callable subroutines FILE and FDONE provide a high-level interface to the HP-1000
spool subsystem. They provide an additional level of simplicity which should encourage all programmers to make use of
spooling, since little knowledge is required.

FTN4,L
PROGRAM SGET(3,75),SET-UP SPOOL LU TO A FILE 4-28-78
INTEGER IB(€16),IT(5),1BUF(20),IPBUF(C10)
DATA IB/7+0,23B,23B,1,6+0/
DATA IPBUF/10%0/
DATA 1T7/-1,4+0/
DATA ISTRC/1/

25

c

C SETS UP A SPOOL LU TO A FILE. FILE 1S BOTH READ & WRITE
C FOR DVR23. ON,SGET,<NAMR> PASSES BACK SPOOL LU IN GLOBAL 106G

OO0

10

c

:RU,SGET, <NAMR>

:DP, 1P

CALL GETST (IBUF,-40,ICNT)

IF

(NAMRCIPBUF ,IBUF ,ICNT,ISTRC)) 99,10

ITYPE = IAND C(IPBUF(4),3)

IF
IB
IB
IB
1B
IB

CITYPE.NE.3) GO TO 89
(3) = IPBUF (1)
(4) = IPBUF (2)

(5) = IPBUF (3)
(6) = IPBUF (5)
(7) = IPBUF (6)

C CHECK TO SEE IF USING FORM :RU,SGET,NAME,SC,CR

c

c

IF
IF

((IB(6).NE.0>.OR.CIB(7).NE.O0)>)> GO TO 80
(NAMRCIPBUF, IBUF ,ICNT,ISTRC)>) 80,30

C IF ND MORE TO PARSE, ASSUME NAMR

c
30

40
80

29
100
89

IB (6) = IPBUF (1)

IF

(NAMRC IPBUF ,IBUF,ICNT,ISTRC)) 80,40

IB (7> = IPBUF (1)
CALL SPOPN (IB,IT)

IT
IT

(4) = 1B (6)
(5) = IB (7)

CALL PRTN CIT)
CALL EXEC (&)
IT = IT -1

GO

TO 99

END
END$

FTN4,L

c
c
c

PROGRAM KS(3,75),RELEASE SPOOL LU ASSIGNED BY SGET 4-28-78

:RU,KS,<LU>

INTEGER IT(S5),[S(3)
DATA 1S/2HSM,2HP ,2H /
CALL RMPAR CIT)

CALL EXEC (23,1S,4,IT)
END

ENDs$

26

C(WILL SHOW SPOOL LU ASSIGNED, IF ANY)

(TO RELEASE SPOOL LU ASSIGNED BY SGET)

ASMB,R,L,B

NAM

FPACK,7 PROGRAM INTERFACE TO SPDOLING 4-28-78

* THESE ROUTINES PRVIDE A PROGRAM INTERFACE TO THE SPOOL SYSTEM
+ THERE ARE TWO ENTRY POINTS:

*

® % % & & % % % % *x & % % % % % * &k & *x x * x *

THUS,
EXT
ENT
SUP
A EQU
B EQU
BUFFR OCT
BNAM ASC
BSC DEC
BCR DEC
acT
BDIS OCT
DEC

1. CALL FILE CILU,INAM,ISC,ICR,[IDISP])

ILU = SPOOL LU RETURNED BY SUBROUTINE

INAM = FILE NAME TO BE ASSOCIATED WITH sSPOOL LU

ISC = OPTIONAL FILE SECURITY CODE

ICR = OPTIONAL CARTRIDGE REFERENCE NUMBER

IDISP = OPTIONAL DISPOSTION FLAG (DEFAULT = 23B)
BIT MEANING 0/1

0 PURGE FILE/SAVE FILE

1 NO HOLD/HOLD

2 ALWAYS ZERO

3 USER FILE/SPOOL POOL FILE

4 HEADERS/STANDARD FILE FORMAT

BITS 8 & 7
0 0 READ & WRITE
0 1 READ ONLY
1 0 WRITE ONLY

2. CALL FDONE CILWU)

ILU = SPOOL LU ASSIGNED

FILE ASSIGNS THE SPOOL LU AND FDONE RELEASES IT.

SPOPN, .ENTR,EXEC
FILE ,FDONE

0 A REGISTER
1 B REGISTER
0,0

3,

0

0

23

23

1,0,0,0,0,0,0

SET UP FILE

LU NOP
NAME NOP
SC NOP
CR NaP
DISP NOP

SPOOL LU TO BE PASSED BASK
FILE NAME

SECURITY CODE

CARTRIDGE REFERENCE
DISPOSITION WORD

27

PERATING SYSTEMS

FILE NOP

JSB .ENTR
DEF LU
DLD NAME,I
DST BNAM
I1SZ2 NAME
DLD NAME, I
STB BNAM+2

L

OPTIONAL PARAMETERS

CLB
LDA SC
STB SC CLEAR FOR NEXT TIME

WATCH OUT FOR THIS CODE! THE A CONTAINS THE ADDRESS IF THE
PARAMETER WAS PASSED DR IT CONTAINS A ZEROD. IN EITHER CASE,
THE CODE IS VALID.

* &% ® ® =

LDA A,I
STA BSC SET SC OR DEFAULT 0

LDA CR
LDA A,lI
STA BCR SET CR OR DEFAULT 0

LDA DISP
STB DISP
SZA,RSS
JMP .10 DEFAULT TO 23B

LDA A,I
STA BDIS
JMP .20

.10 LDA =B23
STA BDIS
.20 JSB SPOPN CALL SPOOL OPEN ROUTINE
DEF ++3
DEF BUFFR
DEF LU,I
JMP FILE,I

JLu NOP

FDONE NOP
JSB .ENTR
DEF JLU
JSB EXEC RELEASE SPODOL LU
DEF #+5
DEF D23
DEF SMP
DEF D4
DEF JLU,I
JMP FDONE,I

D23 DEC 23
SMP ASC 3,SMP
D4 DEC 4

END

END$

28

SAVE TIME & EFFORT IN GENERATING YOUR FIRST RTE-M BASIC SYSTEM

by Todd Field

In some circles, generating an RTE-M system with BASIC is considered a good example of a Catch-22 situation. Before you can
generate BASIC into the system, you need to run RTMTG to generate a user Branch and Mnemonic (B&M) Table to satisfy the
BASIC interpreter's externals. Before you can run RTMTG to create the B&M tables, you need a system. Hence, the catch.
Although the procedure of loading and running RTMTG is not particularly difficult nor time consuming, if you have an RTE-II,
RTE-lI or RTE-IV system with the assembler available, you can save this step.

To see how the assembler can save you time, consider the purpose and format of the B&M tables. A program needs to be
linked to all its subroutines before execution if the time consuming linking operation is to be avoided at run-time. The BASIC
interpreter itself obviously cannot know what subroutines a user program will call, but the B&M table, as it is user defined, can.
What the B&M tables are is a list of subroutine names as they are called for in the BASIC programs, with their starting addresses

and linkage information. The format of this file is relocatable binary, the same as is produced by the assembler or any other
compiler.

The description of RTMTG in the RTE-M generator manual and a quick glance at the source code for RTMTG give one all the
information one needs to construct one’s B&M tables without the use of RTMTG.

ASMB, L

I I I I T T
. »
* GENERAL FORM OF AN ASSEMBLER ROUTINE TO PRODUCE *
* UBMTBL, THE BASIC/1000M BRANCH AND MNEMONIC TABLES *

* *

L Z 22X S RS R A X X R R RS X R R R R R R XSRS RS RS RRRSRRRESR RS R RS RZ X J
*

NAM BMTBL,7 USER GENERATED BRANCH & MNEMONIC TABLE

EXT subr1,subrn, ... ,subrn * ONE ENTRY PER SUBROUTINE

*

[E AR ZE AR RZEERE R R R ZE R RERRRZERRREZRRRRFERRRERRE SR RER RS R R R RE R R X X X J
. BRANCH TABLE *
I ZA A EEER R R REEERZ R R YRR R FREF R R R R R F R RS R RY R FR R RN F RS F SR RF RS FR R R R R R R X)
*

ENT BRTBL
BRTBL DEF #+1

*

DEF subri1 » first subroutine
0CT On....n » n=0 SIMPLE VARIABLE n=1 ARRAY
OCT Ok....k * k=0 TO SUBROUTINE k=1 FROM
OCT xm....m * x=0 REAL FUNCTION x=1 INTEGER
* » m=1 INTEGER VARIABLE m=0 REAL
* . in the above 3 words, N,K and M are bits,
* * for n,k and m, bit 0 is vare1,
* * bit 2 is var#2,...,bit 14 is var#15.
*
* * repeat for every subroutine
*
DEF subrn
OCT On....n
0CT Ok....k

OCT xm....m

29

. OPERATING SYSTEMS

LA R e Y T Y R T L Y T Y T
* MNEMONIC TABLE »
LR Ry N T Y Y T T T T T T T T T T T T v Y gy
»

ENT MNTBL
MNTBL DEC -n » n = NUMBER OF SUBROUTINES
*
OCT mo0..O0aaaabbbb + m=0 SUBROUTINE m=1 FUNCTION
» aaaa = PARAMETER COUNT in bits 4-7
» bbbb = CHARACTER COUNT IN NAME in bits 0-3
ASC 3,subri(* left parenthesis terminates subroutine name
* repeat for every subroutine

OCT m0..Oaaaabbbb
ASC 3,subrn(

END
ENDS

The listing above shows the general form of an assembler program to produce the B&M tables. The EXT's are all the
subroutines to be included in the table. The two ENT’s are called for by the BASIC interpreter. Words two, three and four of each
branch table entry contain the necessary information to link the variables in the BASIC program to the variables in the
subroutine. Word one of each branch table entry will contain, after loading, the address of the subroutine. Words two, three and
four of each entry in the mnemonic table contain the name of the subroutine. Word one of each mnemonic table entry contains
additional linking information. Note that the left parenthesis must immediately follow the subroutine name in the mnemonic table
and that the entry must be padded with blanks to 6 ASCI! characters.

After the table has been assembled, the relocatable output can be transported to the RTE-M system on cassette, to be used in
the generation process.

Below are B&M entries for the table generator RTMTG for sample subroutines SMART and STUPD. Immediately below is the
same table produced according to the procedure described in this article.

ORCI,I),INTG,ENT=BIOR
HPIBCI,I, D)

0001 ASMB, L
ooozllllllllll{lllillllllllllllllllllillllllllllIlllilllillllllllllllll{lll
0003+ »
0004+ SAMPLE ASSEMBLER ROUTINE TO PRODUCE UBMTBL FOR TWO SUBROUTINES »
0005+ »
oooellllllllllillllllllllllll{lllillllllllllllllllllilllillllllllllllllllll
0007+

0008 00000 NAM BMTBL,7 USER GENERATED BRANCH & MNEMONIC TABLE
0009+

0010 EXT BIOR,HPIB

0011+

30

Ry Y N R I R I sy Y Y R Y Y
0013+ BRANCH TABLE »
R Y Y Y Yy Rl i iy Ny R Y

0015+

0016 ENT BRTBL

0017 00000 000001R BRTBL DEF «+1

0018+

0019 00001 000001X DEF BIOR * FIRST SUBROUTINE

0020 00002 000000 ocT o * ALL SIMPLE VARIABLES

0021 00003 000000 oct 0 * NO VARIABLES RETURNED
0022 00004 100003 0CT 100003 * INTEGER FUNCTION

0023+ * INTEGER VARIABLES

0024+«

0025 00005 o000002X DEF HPIB * SECOND SUBROUTINE

0026 00006 000000 oct 0 * ALL SIMPLE VARIABLES

0027 00007 000000 gct o * NO VARIABLES RETURNED
0028 00010 000007 oct 7 * ALL INTEGER VARIABLES
0029+
0030{{‘{‘{iiili'l'l"l'II"I'I'I'IQ'II'l'llllllllIIIIIlllIIIIIII{IIIIIIIIII.II"!'Ililil
0031+ MNEMONIC TABLE *

0032{{{{{{{{'!llllIIIIII{IIIIIIIIIIllllIlllillIlllllllllllllllllllIilllllll

0033+

0034 ENT MNTBL

0035 00011 177776 MNTBL DEC -2 * 2 SUBROUTINES

0036+

0037 00012 100043 DCT 100043 * FUNCTION WITH 2 PARAMETERS
0038 00013 047522 ASC 3,0R(* LEFT PAREN TERMINATES NAME

00014 024040
00015 020040

0039+
0040 00016 000065 0CT 65 * SUBROUTINE WITH 3 PARAMETERS
0041 00017 044120 ASC 3,HPIB(

00020 044502
00021 024040
0042+
0043 END

31

MICROCODED FAST FOURIER TRANSFORM FOR E-SERIES COMPUTERS

by Glenn Talbot

If you occasionally need to use the tools of Digital Signal Analysis like System Transfer Function, Auto Power Spectrum, Cross
Correlation, etc., you probably know that the key to making these calculations is the Fast Fourier Transform. You may have
looked into a Dedicated FFT Computer (Fourier Analyzer) and decided that you don't need it often enough to justify that kind of
money, but you are still sitting around twiddling your thumbs while your “Fast” Fourier Transform written in FORTRAN executes.
Then the microcode-enhanced FFT that was just updated to run on your E-Series computer may be just what you are looking
forl

This package, available from the Data Systems LOCUS Contributed Library, consists of the Microcode, an assembly language
interface program, and a FORTRAN test/example program to verify the operation of your FFT and give you some examples to
help you get started with your own Digital Signal Analysis programs.

To use your FFT package in your RTE Operating system on an E-Series Computer you will need a 1IK WCS board (13197A) and
DVR36 generated into your system. You also need the Microassembier which is part of the 92061A RTE Microprogramming
Package.

When you have all of these things together in your system you need to Microassemble the two Microprograms and load them
into WCS. They only use 512 words of your 1K WCS so there is plenty of room left over for further Microprograms. Then
assemble the assembly language interface program, compile the FORTRAN test program, and load these two together and try
out your FFT.

To transform your own data in an applications program you will first have to get your data into an INTEGER array. This is an
INTEGER FFT with automatic rescaling on overflow. Then generate a SIN-COS look-up table; you may use the code from the
test program for this. Then execute the FFT with simple calls to the interface program entry points.

Order your FFT package from your local HP Sales Office, or (if you are in the U.S.) you can use the Direct Mail Order form in the
back of the COMMUNICATOR 1000. The part number is 22682-13395 for the minicartridge media option. For other options
consuit your local HP Sales Office.

If you want more information about the algorithms used, see the article in IEEE Transactions on Audio and Electroacoustics, Vol.
AU-15, June 1967, pages 45-55 and “The Fast Fourier Transform Algorithm and its Applications,” IBM Research Paper
RC-1743, February 9, 1967, pages 30-33.

If you want to do Digital Signal Analysis but feel you need to know more about it before you can get started, read the HP

Application Note 240-0, Digital Signal Analysis, Time and Frequency Domain Measurements. You may find that you coufd apply
this at some point in your operation.

32

PLOTTING ON THE 9871A PRINTER THROUGH A 264X TERMINAL

by Larry Dwyer

The 9871A has the capability to do plotting as well as. printing. The paper can be fed in a backward and forward motion. Plotting
is a secondary function, however. For example, the resolution is different in the X and Y directions (1/120 inch in X, 1/96 inch in
Y). Also, plotting is done via a series of unconnected dots rather than an unbroken line. Nevertheless, it would be nice to do
“crude” plots on the 9871A - especially if no other plotter is available.

Some customers have inquired about the possibilities of using DVR05 (or DVADS) to control plotting on the 13349A subsystem
(9871A connected to the terminal, accessed as subchannel 4). The data sheet for the RTE drivers package (5953-0861, page
4-5) specifically excludes support for this configuration. Nevertheless, the possibility has been investigated and there are

ways to “'get the job done”.

The basic problem s that the driver always transmits a carriage return/line feed to a device on subchannel 4 (assumedto be a
printer, not a plotter). In other words, "honesty mode” (transmit only what is in the buffer) does not apply to any subchannel

other than zero (an interactive terminal). This is true whether you use the "honesty” bit in the control word or simply put a back
arrow as the last character in the buffer.

A method of circumventing the problem is to go through a subroutine which repeats the last command (“un-doing” the carriage

return/line feed) prior to doing the current command. Using this technique, the program listed below plots a simple sine wave
on the 9871A.

The subroutines SCALE and PLOT are general purpose and can be included in any user program to plot any graph desired.
The full area of the 9871A can be used as the plot area {11 inches by 13.5 inches). When plotting, the paper must be fed using
the platen, not the external paper tractor.

The subroutines SPUT and SMOVE are part of the Decimal String Arithmetic package (described in manual 02100-90140) and

are included on the Grandfather Discs under the file %DECAR. They are also included as part of the IMAGE/1000 product,
92063A.

FTN4,L
PROGRAM PLDTT(3,75),PLOT SINE WAVE ON 9871A PRINTER W/ DVROS
c
C :RU,PLOTT, ,<PRINTER LU>
c
INTEGER LUS(5),PRNTR
EQUIVALENCE (LUS(2),PRNTR)
CALL RMPAR (LUS)
IF (PRNTR.EQ.0) STOP
c
C SET SCALING VALUES
c
CALL SCALE (0.,12.,-1.1,1.1)
c
C PRESET STARTING POSITION
c

CALL PLOT €0.0,0.0,0,PRNTR)

PLOT AXIS AND TIC MARKS

OO0

DO 100 1=0,60

X = FLOAT CI>/10.

CALL PLOT ¢X,0.,0,PRNTR)
CALL PLOT (X,.025,1,PRNTR)

33

COMPUTATIONS -

100 CALL PLDT (X,0.,1,PRNTR)
CALL PLOT ¢0.,0.,1,PRNTR)

c
C PLOT A SINE WAVE
C
DO 1000 1=0,600,5
X = FLOAT (I1>7100.
Y = SIN (X)
1000 CALL PLOT (X,Y,1,PRNTR)
END
c

SUBROUTINE PLOT (X,Y,IZ,PRNTR)
INTEGER [0BUF(6),PRNTR

CALLING PARAMETERS:

X = DESTINATION X VALUE TO PLOT
Y = DESTINATION Y VALUE TO PLOT
1Z = PEN UP/DOWN DURING PLOT (0/1)

THE QUTPUT BUFFER CONTAINS TWO GROUPS OF DATA. THE FIRST IS THE
LAST PLOTTED POSITION AND THE SECOND IS THE CURRENT PLOTTED
POSITION. THE FIRST IS REQUIRED TO MOVE THE “PEN*" TO THE LAST
POSTION BEFORE PLOTTING TO THE NEXT POSITION. THIS IS NECESSARY
BECAUSE THE DRIVER ALWAYS OUTPUTS A CARRIAGE RETURN/LINE FEED
TO THE PRINTER AT THE END OF A BUFFER.

A = ABSOLUTE PEN UP

LOWER CASE A = ABSOLUTE PEN DOWN
R = RELATIVE PEN UP

LOWER CASE R = RELATIVE PEN DOWN
& = DATA BYTE, ZERO VALUE

15501B = ESC A
15541B = ESC LOWER CASE A

s NeNesNsNsNeoNoNsNesNeNoNeoNeNoNoNoNeoNol o NeNe NN

DATA I0BUF/15501B,2H88,2H88,15541B,2H08 ,2H86/
DATA IUP/BS5/,IDN/97/

OO0

SCALE X AND Y BETWEEN 0 AND 1, RETURN IN X2, Y2

CALL XSCAL (X,X2,Y,Y2,0)
[F (X2.GT.1.) X2 = 1,
IF (Y2.GT.1.) Y2 = 1.
IF (X2.LT.0.) X2 = 0.
IF (Y2.LT.0.> Y2 = 0.

SCALE X2,Y2 TO MAX PLOT AREA. FIX TO INTEGER VALUES

OO0

IX = 1587. = X2
Iy = 1065. + Y2

c
C GENERATE PLOT DATA BYTES

34

OO0

OO0 (o] OO0 OO0 OO0

(]

N sNeoNeoNoNoNeNeNoNeNe N o]

. COMPUTATIONS

IC1 = 64 + (IX/64)

IF (IC1.6T7.126) IC1 = 126
IC2 = 64 + [AND (IX,63)
IF (I1C2.6T.126) IC2 = 126
IC3 = 64 + (IY/64)

IF (IC3.6GT.126) IC3 = 126
IC4 = 64 + IAND (1Y,63)
IF (IC4.GT7.126) IC4 = 126

MOVE DATA BYTES IC1 THRU IC4 TO QUTPUT BUFFER CHARACTER POSITIONS
9 THROUGH 12.

CALL SPUT (IOBUF,9,IC1)
CALL SPUT (IOBUF,10,IC2)
CALL SPUT (IDBUF,11,1C3)
CALL SPUT (IOBUF,12,1C4)
SET PLOT MODE TO ABSOLUTE, PEN UP. IF IZ#0, PEN DOWN.

CALL SPUT (IOBUF,8,IUP)
IF (IZ.NE.O0) CALL SPUT (IOBUF,8,IDN)

OUTPUT THE PLOT DATA
CALL EXEC (2,PRNTR,I0BUF,6)

SAVE THE CURRENT DATA FOR THE NEXT PLOT
CALL SMOVE (IO0BUF,9,12,10BUF,3)
RETURN
END
SUBROUTINE SCALE (X1,X2,Y1,Y2)

THIS SUBROUTINE IS THE USER ENTRY POINT TO XSCAL. IT’S PURPOSE
IS TO MAKE THE IFLAG PARAMETER IN XSCAL TRANSPARENT TO THE USER.

CALL XSCAL (X1,X2,Y1,Y2,1)
RETURN
END

SUBROUTINE XSCAL (X1,X2,Y1,Y2,IFLAG)

THIS SUBROUTINE WILL EITHER STORE THE SCALE DATA AWAY CIFLAG=1)

OR WILL USE THE SCALING INFORMATION TO RESCALE THE CURRENT DATA
C(IFLAG=0).

THE SCALING DATA IS ENTERED WITH THE PARAMETERS:

X1 = MIN X VALUE EXPECTED
X2 = MAX X VALUE EXPECTED
Y1 MIN Y VALUE EXPECTED
Ye MAX Y VALUE EXPECTED

35

c IFIRST = FIRST TIME FLAG

c
DATA IFIRST/0/
c
C STORE OR SCALE 7
c
IF (IFLAG.EG.0) GO TO 100
c
C STORE SCALING DATA
c
SX1 = X1
DX = X2 - X1
SY1 = Y1
DY = Y2 - Y1
IFIRST = 1
RETURN
c
C SCALE CURRENT DATA X1, Y1 USING STORED SCAL ING DATA
C RETURN SCALED VALUES IN X2, Y2.
c
C IF THIS IS FIRST CALL, ERROR ... STOP 13
c
100 IF (IFIRST.EQ.0) STGP 13

X2 = (X1-SX12/DX
Y2 = (Y1-SY1)/DY
RETURN

END

END$

36

INSTRUMENTATION

DATA ACQUISITION VIA HP 2313 SUBSYSTEM AT LOW SAMPLING RATES

John A. Danos
Rohm & Haas Research Laboratories
Bristol, Pennsylvania

[Editors note: John A. Danos is the winner of an HP-21 Scientific calculator for submitting this article to the HP-1000
Communicator. For details on how you can win a calculator, see the Editor's Desk column in this issue.}

Using the HP 2313 subsystem in RTE Il to collect data from several instruments at low data rates (.11to 1 point per second) may
present several problems. These include trade-offs between writing a number of memory resident programs, one for each
instrument, or having disc resident programs swapping at high rates. A method was developed to have a single memory
resident program scan a number of analog inputs and write the data to a dummy driver. This driver buffers analog data and
sample time. It can be read from any disc resident program which selects the analog inputs of interest for processing. Since
communication between the program collecting and storing the data and programs using the data is through a driver, all
activity is controlled by the system itself, without the need for hardshakes, class I/O, etcetera.

The method uses three or more “programs”. These are DVR77 (the dummy driver), AINLC and ANSAV. Listings for all three are
in% ided at the end of this article. Program ANSAV is the application program. There would normally be several programs of this
type; one for each instrument on line.

DVR77

This driver stores data that is written to it from the memory resident program AINLC. It is configured to accept 16 analog inputs
and the time the sample is taken. Analog inputs 0-7 are only buffered for 1 second; analog inputs 8-15 are buffered for 20
seconds. For each of the 20 buffered data points, the off-set time in seconds (resolution of 1/100) is also stored. The driver
allows a WRITE call only from a memory resident program. It accepts two types of READ calls, slow and fast. For slow reads, the
driver returns the time of the last sample and the 0-7 analog inputs. For fast reads, the driver returns the time of the last sample,
all data for the 8-15 analog inputs of the last 20 seconds, the off-set times and the stack pointer.

AINLC

This is a memory resident program that makes calls to the 2313 subsystem to acquire data from 16 analog inputs. It checks the
status of the 2313 and will set the device “up” ifitis “down". In addition to analog data, it takes a time reading. This information
is then written to DVR77 for storage. AINLC is scheduled once every second and should have a high priority.

ANSAV

This is a background application program that is scheduled every 10 seconds. It will collect data from inputs 8-15 at sampling
intervals from 1 to 32,767 seconds. When it collects the required number of points, they are listed to the terminal from which the
program was run. This program reads fast data from DVR77 rotating buffers. This program can serve as a basis for writing, filing
and data reduction programs.

Results:

We have successfully used this technique in acquiring data from several gel permeation and liquid chromatographs. The
application programs are scheduled by external events and monitor instrument status. Collected data are stored in files for later
processing. System memory requirements are small with DVR77 and AINLC using about 360 words, of which half are data.
AINLC executes once per second and requires a few milliseconds actual execution time. The 2313 will be busy about 20
milliseconds every second. Call to DVR77 require 2-3 milliseconds to complete and are of the immediate completion type.

37

INSTRUMENTATION

Conclusion

We feel that this technique fills a gap in using the 2313 subsystem in the automation of low data rate laboratory instruments. It
allows for great fiexibility in handling data from a large number of different types of instruments, all of which are not on-line at

any given time. Programs are easily developed for the different instruments with no worry of interference or need for frequent
system generations.

[Editor's note: The technique used by AINLC to “up" the device EQT for the 2313 driver assumes the EQT is the first in memory,
as indicated by the contents of base page 1650B. Also, the technique will work only if a pending interrupt actually occurs.
Simply changing the “down” bit on the EQT will not re-initiate the request. A simple method of processing a “downed” EQT is to

call the system library routine ‘MESSS' to give the “up” command to the device. This routine is described in Part 5 of the RTE
manual.]

FTN4,L
PROGRAM ANSAV,3,50

THIS PROGRAM MAKES CALLS TO DVR77 TO OBTAIN FAST(RELATIVE) DATA BEING
COLLECTED BY AINLC. IT CAN SELECT 1-400 POINTS FROM 1 OF 8 ANALOG

INPUTS AT INTERVALS OF 1-32767 SECONDS. THE POINTS AND TIMES

ARE LISTED WHEN THE LAST POINT IS AGUIRED.THE PROGRAM IS SCHEDULED

EVERY 10 SECONDS. THE CALL TO DVR77 GETS THE LAST 20 SECONDS OF BUFFERED
DATA FROM THE 2313 ANALOG SYSTEM. THE BUFFER IS SCANNED AND SELECTED

DATA IS STORED IN IDATA AT THE GIVEN RATE. SUBROUTINE MAIN IS RESPONSIBLE
FOR SORTING DATA FROM DVR77‘S ROTATING BUFFER. THIS PROGRAM IN ADDITION
TO LISTING INPUT DATA CAN SERVE AS A MODEL FOR FILING PROGRAMS.

sNoNoNosloNoNoNoNoNo NN N o]

DIMENSION ITJ(5),1Y(1),1X(8,20),IP(5),DATAC400)

COMMON IDATAC400),ETIME(400),12¢186),J,TLAST,IT1(5),T1,IRATE,IN1
EQUIVALENCE(I12(¢(27),1X(1,1))

CALL RMPARCIP)

LU=IP(1)
WRITE(CLU,4000)
4000 FORMAT("TYPE IN INPUT#, RATE, # OF POINTS*)
c
c AINLC IS CONFIGURED SO THAT INPUTS 1-8 REFER TO ANALOG INPUTS.
c 8-15 OF SLOT 4. THE RATE IS THE INTERVAL BETWEEN POINT IN SECONDS
c THE MAXIMUM NO OF POINTS IS 400¢ DIMENSION OF IDATA,ETIME,ETC)
READCLU, #)IN1,IN2,IN3
CALL INITL
c
c THIS CALL WILL "INITIATE* THE DATA COLLECTION BY GETTING THE 1ST
c POINT AND THE TIME.
c
c
IRATE=IN2
DO 10 I=1,5
ITICII=12CI)
10 CONTINUE
GO TO 1000

C GET DATA AND STORE
200 CALL MAIN
C TEST IF DONE
IFCJ.GT.IN3) GO TO 300
1000 CALL WAIT(10,2,IERR)
GO TO 200
C ALL DATA IN POST WRITE TO LIST DEVICE
300 WRITE(LU,4001)

38

INSTRUMENTATION

4001 FORMAT("TIME OF FIRST POINT'")
WRITECLU,3000>ITJ
WRITECLU,4002)>

4002 FORMAT("DATA POINT TIME™)
WRITE(CLU,4003)

4003 FORMAT(C"™ ')

N4=IN3/5
DO 60 I=1,IN3
DATACI)=IDATA(I)+.8/2048.

60 CONTINUE
K=0
DO 40 I=1,N4
WRITECLU,3001)C(DATACK+J) ,ETIMECK+J),J=1,5)

3000 FORMAT(5(16,5X))

3001 FORMAT(S(F7.4,2X,F7.2))

K=K+5
40 CONTINUE
2000 END

SUBROUTINE INITL
DIMENSION 1X(8,20)
COMMON IDATAC400),ETIME(400),12¢186),J,TLAST,IT1(5),T1,IRATE, IN1
EQUIVALENCE (12¢27)>,IX(C1,1))
CALL EXEC(1,26,12Z2,186)

C SET INITIAL TIME

C CONVERT 1ST DATA TIME TO REAL VALUE
CALL TABS(IZ,T1)
ETIMEC1)=0.
ISTK=12¢(6)
IFCISTK.EQ.0)ISTK=20
IDATAC1)=1XCIN1,ISTK)/16
TLAST=0.
J=2
RETURN
END
SUBROUTINE MAIN
DIMENSION IDOR(C20)>,TORD(C20),1X(8,20)
COMMON IDATAC400),ETIME(400),12¢186),J,TLAST,IT1(¢(5)>,T1,IRATE,IN1
EQUIVALENCE (12(¢27),1X(1,1))

C GET DATA FROM DVR77
CALL EXEC(1,26,1Z,186)

C CONVERT TIME TO REAL VALUE
CALL TABSCIZ,TNOW)
TNOW=TNOW-T1
ISTK=12(6)>

C REORDER TIME AND DATA FROM DVR77 BUFFER
TTEST=12¢13>/100.+12¢2)
DO 20 I=1,20
IFCISTK.EQ.0)ISTK=20
IDORC21-1)=IXCIN1,ISTK)
TDIFF=TTEST-12C(ISTK+6)/100.
IFCTDIFF.LT.0.)TDIFF=TDIFF+60
TORD(21-1>=TNOW-TDIFF
ISTK=1STK-1

20 CONTINUE

C STORE DATA AND TIME VALUES AT NTH INTERVALS
=0

31 I=1+1
IFCI.GT.20>G0 TO 34
IFCTORDCI).GE.TLASTIGO TO 30
GO TO 31

39

INSTRUMENTATION

30 TNEXT=TLAST+IRATE-.S

32 IFCTORDC1).GE.TNEXTYGO TO 33
I=1+1
IFCI.GT.20) GO TO 34
GO TO 32

33 TLAST=TORDCI)
IDATACJ)=IDORCI)/16
ETIMECJ)=TORDCI)
J=J+1

36 I=]+1

C TEST TO SEE IF ALL DATA IN
IF(J.GT.400> GO TO 34
IFCI.GT.20> GO TO 34
GO TO 30

34 RETURN
END
SUBROUTINE TABSCITIN,TO)

THIS ROUTINE CONVERTS TIME ARRAYS INTO REAL NUMBERS.

o NoNe]

DIMENSION ITINC1)

TO=ITINC1)#. 01+ ITINC2)+ITINC3)#60.+ITINC4)+3600.
RETURN

END

ENDs$

ASMB, L

* THIS IS A CORE RESIDENT PROGRAM DESIGNED TO AQUIRE DATA USING THE

2313 ANALOG SUB SYSTEM AND STORE THIS DATA IN DVR77. IT COLLECTS DATA
+« FROM 16 INPUTS, TAKES A TIME READING, AND UPS THE DAS IF IT IS DOWN.
IT USES THE FOLLOWING CALL:
*

*

*

*

*

*

CALL EXEC(2,LU,BURF,21)

DATA IN BURF IS TIME(S),ANALOG 0-16(16). THE PROGRAM IS CONFIGURED TO
SAMPLE DATA ONCE PER SECOND SEQUENCIALLY ON INPUTS 0-15,SYSTEM 0,
SLOT 04.
NAM AINLC,1,25,2,1
ENT AINLC
EXT EXEC,$LIBR,$LIBX
A EQU 0
B EQu 1
AINLC NOP
JSB $LIBR CHECK 2313 AV AND UP IT IF DOWN
NOP
LDA =D64 BASE LINK PRINTER 1650B
ADA 1650B
LDB A,I A REG=ADDRESS OF WORD S EQTS
ELB
SEZ CK BUSY AND WAIT
JMP CONT
ELB
SEZ,RSS CK AVAIL +DOWN
JMP CONT
CME A2313 IS DOUN
ERB,ERB
STB A,l RESTORE TO EQTA AV=0

40

INSTRUMENTATION

CONT JSB sLIBX
DEF #+1
DEF #+1
JSB EXEC TAKE 16 A2313 READINGS
DEF #+§5
DEF CODo02
DEF CN18
DEF QUE
DEF N6
JSB EXEC TAKE TIME READING
DEF ++4
DEF COD11
DEF TIME
DEF YEAR
JSB EXEC DUMP DATA TO DVRS80
DEF #+5
DEF CODO02
DEF CN26
DEF BUFR
DEF N21
JSB EXEC CALL EXIT
DEF #+3
DEF N6
DEF NUMO
NOP
COD02 DEC 2
CN18 O0CT 122
COD11 DEC 11
CN26 DEC 26
N21 DEC 21
NUMO DEC 0
QUE DEC 1
DEC 3
DEC 2
DEF GAIN
DEC 3
DEC 1
DEF CHANL
DEC 3
DEC 0
DEF SEQ
DEC 4
DEC 16
DEF BUFR
DEC 3
DEC 1
DEF CLEAN
BUFR BSS 16
TIME BSS §
YEAR BSS 1
GAIN 0OCT 40200
0CT 7
SEQ 0CT 160200
CLEAN OCT 120000
CHANL OCT 120200
N6 DEC 6
END AINLC

41

INSTRUMENTATION

ASMB,R,L,C

t‘tt‘t““““‘t“‘t““““““““tt

THIS DUMMY DRIVER SERVES AS A DATA BUFFER AND INTERFACE FOR RTE
PROGRAMS USING THE 2313 ANALOG SUB SYSTEM. IT IS USEFUL IN
INSTRUMENT APPLICATIONS WITH LOW DATA RATES.(1 POINT/SEC TO ANY
LOWER RATE. IT ELIMINATES THE NEED TO WRITE A NUMBER OF CORE
RESIDENT PROGRAMS DEDICATED TO DIFFERENT INSTRUMENTS. IT REQUIRES
ONE CORE RESIDENT PROGRAM WHICH READS 16 CHANNELS OF THE 2313
SUB SYSTEM.THIS CORE RESIDENT PROGRAM WRITES TO THE DRIVER. ANY
NUMBER OF DISK RESIDENTS CAN READ FROM IT.
THE 16 CHANNELS ARE IN TWO GROUPS,FAST AND SLOW. THE FAST HAS
BUFFERING FOR 20 POINTS THE SLOW 1. A STACK POINTER SHOWS THE MOST
RECENT POINT. IN ADDITION TO DATA,THE TIME OF THE MOST RECENT POINT
IS SAVED AND AN OFFSET FOR EACH OF THE 20 POINTS IS RETAINED. THE
OFFSET RESOLUTION OF 10°S MILLI SEC.

PROGRAMS WHICH READ FROM THIS DRIVER GET FAST OR SLOW STORED
DATA. THE CALLING PROGRAM SELECTS THE DATA OF INTEREST. THE CALLS
ARE:

CALL EXEC(1,LU,IDATAF,186) FOR FAST DATA
CALL EXEC(1,LU,IDATAS,13) FOR SLOW DATA
IDATAF CONTAINS TIME(S),STACK PT(1),0FFSET TIMES(20),ANALOG 8-15(160)

IDATAS CONTAINS TIME(S),ANALOG 0-7(8)
REFER TO PROGRAMS AINLC AND SPROO0 OR ANSAV FOR TYPICAL PROCEDURES.

THE DRIVER IS CONFIGURED AT GEN TIME LIKE ANY OTHER.

EQT ENTRY
35,DVR77,T=0
INT TABLE
35,EQT,21
#2o INITIATOR SECTION##+
NAM DVR?77
ENT 1.77,C.77
1.77 NOP
LDA EQTGE,I GET CONTROL WORD
AND =B3
CPA =B1 IS THIS A READ
JMP READ YES GO TO READ
CPA =B2 IS THIS A WRITE
JMP WRITE YES GO TO WRITE
ILLR LDA =B2 NONE OF THE ABOVE
JMP 1.77,1 ILLEGAL CALL EXIT
READ LDA EQT8,I
cPA K13 IS THIS FOR SLOW DATA
JMP SLOWR YES
CPA K186 IS THIS FOR FAST DATA
JMP FASTR YES
JMP ILLR NONE OF THE ABOVE
SLOWR LDA SDATP GET SOURCE ADDRESS
LDB EQT7,1 GET DES. ADDRESS
MVIW K13 MOVE DATA 0OUT
JMP EXIT
FASTR LDA FDATP GET SOURCE ADDRESS
LDB EQT?7,1 GET DES. ADDRESS
MVW K186 MOVE DATA 0OUT
JMP EXIT

42

INSTRUMENTATION

WRITE LDA 1717B GET ID ADDRESS
ADA =D14 BIAS FOR WORD 14
LDA A,I GET WORD FOR TYPE
AND =B17
CPA =B1 IS PROGRAM CORE RESIDENT
RSS YES
JMP ILLR NO
LDA EQT7,I GET SOURCE ADDRESS
LDB SDATP GET DES ADDRESS
MVIW K8 MOVE DATA
LDB FSKPT GET DES ADDRESS
MVIW K8 MOVE DATA
STB FSKPT
LDB PTIME GET DES ADDRESS
MVW KS
LDA TIME+1 LOAD IN SECONDS
MPY K100 MULT SEC BY 100
ADA TIME COMBINE 10‘S MSEC
LDB PINTV LOAD INTERVAL POINTER
ADB STKPT LOAD OFFSET
STA B, I STORETIME
LDA STKPT
INA INC STACK POINTER TEST
CPA =D20 FOR RESET
JMP RESET
STA STKPT
EXIT LDA =B4
LDB EQTS,I
JMP 1.77,1
RESET CLA
STA STKPT
LDA IFSKP
STA FSKPT
JMP EXIT
*
. ##2CONTINUATOR SECTION##+»
C.77 NOP SPURIDUS INPUT
182 C.77
JMP C.77,1
A EQU 0
B EQU 1
SDATA BSS 8
TIME BSS S
STKPT NOP

INTVL BSS 20
FDATA BSS 160
SDATP DEF SDATA
FDATP DEF TIME
IFSKP DEF FDATA
PTIME DEF TIME
FSKPT DEF FDATA
K100 DEC 100

KS DEC 5
K13 DEC 13
K8 DEC 8

K186 DEC 186
PINTV DEF INTVL
EQU 1650B

EQT6 EQU .+13

EQT7 EQU .+14

EQT8 EQU .+15
END

43

OEM CORNER

The inclusion of the following article in the HP 1000 Communicator
does not imply endorsement of the OEM’s product by Hewlett-Packard.
Hewlett-Packard assumes no responsibility for the information con-
tained herein or responsibility for the OEM’s product.

A MODERN LANGUAGE FOR ON-LINE SYSTEMS

by David Hamilton
Theta Computer Systems

INTRODUCTION

Hewlett-Packard HP-1000 computer systems offer users a combination of computing power and flexibility previously found only
in much larger, more expensive equipment. These computers provide rapid random-access storage, good CRT communica-
tions capabilities, fast internal computation speeds and a powerful repertoire of byte-manipulation instructions. These
capabilities make the HP-1000 computer systems ideally suited to the development of on-line systems which support the
simultaneous access of many users to a common base of stored information.

Although HP-1000 computer systems represent a substantial reduction in the cost of computing, the cost of designing,
programming and implementing on-line systems remains high. Users commonly experience problems in the development of
on-line systems and find that the cost of designing, programming, and maintaining an on-line system equals or exceeds the
initial hardware investment. However, software tools, structured programming techniques, and structured design approaches
exist which have the potential for greatly reducing on-line system development time and cost.

Theta Computer Systems, a Hewlett-Packard OEM, has developed a new, general-purpose structured programming language
with the specific intent of reducing the cost of developing on-line systems and applications programs. This new programming
language is called QBOL. The purpose of this article is to briefly demonstrate the need for a new programming language and to
illustrate a very small number of the QBOL language features which simplify the development of on-line systems on the
HP-1000.

THE NEED FOR A NEW PROGRAMMING LANGUAGE

All on-line systems consist of three essential components. These components exist whether the function of the on-line system is
data reduction, stress analysis, inventory management, or purchase order entry. The three essential components are as
follows:

e CRT communications and user interface.
e Data Base access and maintenance.
® Task related computational functions.

All of the design and programming activities needed to develop an on-line system ultimately lie within one of these three areas.
The QBOL language was designed with each of these three processing requirements in mind and the language embodies
specific features which simplify design and programming in each area.

By contrast, FORTRAN and ALGOL were developed in the early days of data processing when batch-oriented ‘number
crunching' was the only economically feasible application of digital computers. Virtually all programming was done by
scientists or engineers and consisted of little more than FORmula TRANslation which could be suitably accomplished with a
rudimentary ALGOrithmic Language. FORTRAN and ALGOL were designed at a time when sequential, unit-record devices
were the only /O devices available. Ease of maintenance was a secondary requirement in programming and, as a consequ-
ence, neither FORTRAN nor ALGOL embodies structured programming concepts or satisfactory program annotation facilities.

BASIC, on the other hand, was developed at Dartmouth College in the early 1960’s to facilitate the development of ‘quickie’
programs by inexperienced users. Customarily implemented as an interpreter rather than a compiler, BASIC typically imposes
a tremendous program storage and execution overhead. This makes BASIC unsuitable for developing programs and systems
which must perform many complex functions in the shortest possible time. As a ‘quickie’ language, BASIC is also unsuited to
applications requiring extended arithmetic precision.

44

OEM CORNER

Computer

Museum

QBOL is a modern, powerful, general-purpose programming language designed to facilitate the development of on-line
systems and programming applications of many varieties. Extremely easy to learn and use, QBOL nonetheless offers power
and flexibility to solve advanced programming and system development problems. The QBOL compiler produces efficient
relocatable code for RTE II/Ill. Language features include 48-bit arithmetic, comprehensive CRT and mass-storage /O, full
string and array manipulation, nested compound IF's, and much more.

The remainder of this article returns to the problem of the development of on-line systems, addresses each of the three essential
functional areas which all on-line systems embody, and briefly highlights a few QBOL language features designed to facilitate
programming in each area.

CRT COMMUNICATIONS AND USER INTERFACE

By definition, an on-line system accepts user requests for service either through a remote hard-copy device or CRT. In turn, the
system performs functions specified by these requests and returns resulting information to the user. While the detailed, bit-by-bit
transfer of information between the CRT and the computer mainframe is made extremely simple by existing Hewlett-Packard
software facilities, the human factors involved in this communication present additional challenges.

Ideally, a good on-line system accepts function requests and displays results in a format which is convenient for the user.
Assuming that CRT's are to be used, the system designer first lays out the detailed display format associated with each system
functional request or information display. Good CRT layouts have the following characteristics:

e Function requests always appear in the same area of the CRT.

® Required or optional input parameters are clearly indicated in the display and consistently organized from one function to
another.

® The system makes liberal use of CRT cursor positioning capabilities to direct the user to needed input fields.
e |nformation produced by the system is always displayed in a consistent format with each result field clearly labeled.

® Any error messages or warnings produced by the system are displayed in a reserved area of the screen which is used
exclusively for this purpose. :

The computer listing which follows is a complete QBOL program which demonstrates the simplicity of CRT communications,
cursor-positioning and screen format control. All QBOL programs begin with a declaration of the variables, buffers, and
character strings used within the program. The program procedure immediately follows the declaration of program constants
and storage. Unless otherwise directed by the programmer, QBOL assumes that the first executable statement appearing in a
program is to be the program primary entry point. The following QBOL program is for illustration purposes only and does not
necessarily represent the best or easiest way to perform the indicated functions using QBOL. The terminal control sequences
used in the program are for the Hewlett- Packard 2640 series CRT terminals.

DEMO START

* DEMONSTRATE SIMPLE CRT 1/0 USING CURSOR POSITIONING, FORMAT
* CONTROL, AND TEXT CONCATENATION

*

* DECLARE CRT COMMAND BYTE SEQUENCES

*

CLEAR A2 X"1B4A* CLEAR SCREEN SEQUENCE

HOME A2 X"1B4g* HOME CURSOR SEQUENCE

BLINK A4 X''1B266441" START BLINING FIELD
ENDBLINK A4 X"1B26640" END BLINKING FIELD

45

~ OEM CORNER

* DECLARE GENERAL~PURPOSE CURSOR-POSITIONING SEQUENCE

*

CURSOR RECO CURSOR NAMES THE NEXT 9 CHARACTERS
A3 X*1B2e61" ESCAPE, &, LOWER-CASE A

COL UMN A2 TWO CHARS FOR COLUMN POSITION
A1l X"g3 LOWER-CASE C TO INDICATE COLUMN

ROW A2 TWO CHARACTERS FOR ROW
A1l "R UPPER~CASE R FOR ROW AND END SEQUENCE

DECLARE USER RESPONSE AREA INPUT LENGTH, TERMINAL LU
AND SOME CANNED MESSAGES TO USE LATER

WORK BEGIN A WORKING STORAGE AREA
REPLY AS S-CHARACTER INPUT BUFFER
LENGTH 12 ONE-WORD INTEGER FOR INPUT LENGTH COUNT
LU 12 26 USE MASTER TERMINAL (LU=1)
*
PATONBAK A26 “EXCELLENT! YOU ARE CORRECT*
ERRORMSG A15 i1t LRONG 111w
*
* BEGIN PROCEDURE BY SENDING QUT "HELLO"™ MESSAGES
* THE QBOL PTERM VERB DIRECTS OUTPUT TO THE SPECIFIED LU

BEGIN PTERM LU,*"HELLO, THIS IS A DEMONSTRATION"

RETRY PTERM LU,*"1 WILL NOW CLEAR-HOME AND ASK A QUESTION"

* CONCATENATED FIELDS ARE SEPARATED BY COMMAS
PTERM LU,HOME,CLEAR,"WHO IS BURIED IN GRANT*S TOMB?"

*

* NOW ACCEPT USER RESPONSE - THE QBOL GTERM VERB GETS

* INPUT FROM THE SPECIFIED LU INTQ THE SPECIFIED BUFFER
* AND SETS THE LENGTH RECEIVED IN THE LENGTH FIELD

*

GTERM LU,REPLY,LENGTH

. NOW VALIDATE THE ANSWER
*
IF REPLY="GRANT" IF THE ANSWER IS CORRECT,
PTERM LU,PATONBAK SEND OUT A CONGRATULATORY REPLY
STOP AND TERMINATE PROGRAM EXECUTION
ELSE BUT IF IT’S NOT,
MOVE COLUMN,"50" SET UP A CURSOR SEQUENCE TO A SPECIAL
MOVE ROW,"01" ERROR AREA IN ROW 1, COLUMN 50
. SEND ERRORMSG DUT, AND MAKE IT
. BLINK TO GET HIS ATTENTION
PTERM LU,CURSOR,BLINK,ERRORMSG , ENDBL I NK
WAIT 5 THEN WAIT S SECONDS
GOTO RETRY AND ASK THE QUESTION AGAIN
*
END THAT’S THE WHOLE PROGRAM

DATA BASE ACCESS AND MAINTENANCE

The central characteristic of most on-line systems is that they provide a mechanism by which system users have access to a
body of stored information and are able to interrogate, summarize, or modify this information base. Thus, an on-line stress-
analysis system may contain data files which include physical properties of materials, physical component descriptions, or
results of previously conducted tests. Similarly, inventory control system typically contain product descriptions, warehouse

locations, and inventory counts. In either situation, the system user needs to randomly access the information files to obtain the
specific information which he requires. Therefore, the system designer must provide a file accessing subsystem which permits

rapid random retrieval, alteration, addition, or deletion of data stored within the system files. In addition to this random

46

accessing requirement, the system designer should plan for sequential access to facilitate the preparation of reports which
summarize the infomation contained in entire files or segments of files. The following program demonstrates the extremely
simple QBOL sequential and random-access /O capabilities. Although the program has a ‘batch’ structure for brevity, the
demonstrated QBOL statements work equally well in an on-line environment.

110 START
EXTRN UPDAT DECLARE NAME OF EXTERNAL SUBROUTINE
*
* DECLARE FMP DATA CONTROL BLOCKS FOR T WO FILES
*
TRANFILE DCB290 DCB FOR TRANSACTION FILE
RANDFILE DCB290 DCB FOR RANDOM-ACCESS FILE
»
FLAG 12 DECLARE I0 STATUS FLAG
*
TRANREC REC14 TRANREC NAMES THE NEXT 14 CHARACTERS
*
TRANDATE A6 DATE OF THIS TRANSACTION IN FORM MMDDYY
TRANAMT 16 AMOUNT OF THIS TRANSACTION (48-BIT INTEGER)
RECNUM 12 NUMBER OF RANDOM FILE RECORD TO
» WHICH THIS TRANSACTION APPLIES
*
» NOW DEFINE FORMAT OF RANDOM ACCESS FILE RECORDS
*
RANDREC REC12
LASTTRAN A6 DATE OF LAST TRANSACTION AGAINST THIS REC
RANDTOT 1I6 TOTAL OF TRANSACTIONS AGAINST THIS REC
*
* BEGIN ACTUAL UPDATE PROCESS
* OPEN SEQUENT AL INPUT TRANFILE AND RANDOM-ACCESS UPDATE
* FILE RANDFILE
*

OPEN TRANFILE,FLAG,“TRANS", "]

IF YOU WISH, YOU MAY TEST THE “OPEN" COMPLETION STATUS

IF FLAG.LT.O TEST SUCCESSFUL OPEN
PTERM 1,"UNABLE TO OPEN TRANFILE"™ IF UNSUCCESSFUL, NOTIFY
STOP MASTER TERMINAL AND STOP

ENDIF

OPEN RANDFILE,FLAG, " RANDY" *tU'
RETRIEVE THE NEXT SEQUENTIAL RECORD FROM TRANSACTION FILE
PUT 1/0 COMPLETION CODE IN “FLAG" READ RECORD INTO
TRANREC, GO TO ENDTRAN IF END OF FILE
PROCLOOP GET TRANFILE,FLAG,TRANREC,ENDTRAN

COMPLETE 1/0 STATUS RETURNED IN FLAG

IF FLAG.LT.O TEST FOR ACCESS ERROR
PTERM 1,"ACCESS ERROR ON TRANFILE'™ IF ERROR, NOTIFY
STOP MASTER TERMINAL AND STOP
ENDIF

NOW RANDOMLY READ THE RECORD SPECIFIED BY RECNUM IN THE
TRANSACTION RECORD JUST READ

READ RANDFILE,FLAG,RANDREC,RECNUM

47

OEM CORNER

* % % =®

* & * % &

L 3

ENDTRAN

Although data base accessing and maintenance should be controlled by a single subsystem, the retrieved data records are
typically manipulated by numerous different programs. Structured systems development dictates that the designer provide
standard record layout definitions to be used by all programs in the system. Ideally, this should be accomplished by means of a
programming language feature which permits the system developer to ‘copy’ these standard record definitions from separate
source files. In this way, every program in the system automatically refers to the same data by the same name and each

NOW CALL AN EXTERNAL ROUTINE TO UPDATE THE RANDOM-ACCESS
RECORD BASED UPON THE CHANGES IN TRANREC

CALL UPDAT ,RANDREC,TRANREC PASS RANDOM RECORD AND TRANSACTION
ADDRESSES TO EXTERNAL PROGRAM

RETURN HERE WHEN "UPDAT' IS FINISHED AND WRITE QUT
THE MODIF IED RANDOM-ACCESS RECORD

WRITE RANDFILE,FLAG,RANDREC,RECNUM

GOTO PROCLOOP CONTINUE PROCESSING TRANSACTIONS

COME HERE AT END OF TRANSACTION FILE
CLOSE TRANFILE
CLOSE RANDFILE
PTERM 1,"FILE UPDATE COMPLETE'"™ ELL MASTER TERMINAL WE ARE
STOP DONE - TERMINATE PROGRAM

END

program listing automatically reflects the most up-to-date record layouts.

The following example illustrates a QBOL program which is to be called by the /O program shown in the preceding example.
Since this program manipulates the same data records as the calling program, the QBOL COPY feature is used to ensure that
the program will use the same data names for the same data elements. The example assumes that two FMP source files exist.
These files, named &TRANS and &RANDY contain the exact statements used to define TRANREC and RANDREC in the
preceding example. As the example shows, the programmer only needs to code the two ‘+ + COPY’ statements to include the
record definitions in the program. At compile time, QBOL will insert the copied statements so that the programmer sees the

record layouts in his program listing.

® & ® %

START 7 A SEPARATELY COMPILED UPDATE PROCEDURE

COPY IN TRANSACTION FILE AND RANDOM-ACCESS DEFINITIONS
AS PART OF THIS COMPILE

++COPY &TRANS

*

++COPY & RANDY

*

UPDAT
.
.

ENTRY UPDAT DECLARE ENTRY POINT FOR EXTERNAL CALLERS
SUBR RANDREC,TRANREC THIS IS A SUBROUTINE WHICH PROCESSES
EXTERNAL PARAMETERS RANDREC AND TRANREC

MOVE LASTTRAN,TRANDATE SET NEW LAST TRANSACTION DATE
SET RANDTOT=RANDTOT +TRANSAMT ADD THIS TRANSACTION AMOUNT TO

PREVIOUS TOTAL FOR THIS ITEM
EXIT UPDAT RETURN TO CALLER

END

48

OEM CORNER

TASK-RELATED COMPUTATIONAL FUNCTIONS

The range of possible task-related computational functions performed by on-line systems is as widely varied as the
requirements for these systems themselves. Nevertheless, certain computational procedures are common to virtually all on-line
systems. A few of the most common functions are as follows:

e Extended-precision arithmetic to conveniently support the very common instances in which internal system results exceed
the capacity of one 16-bit computer word.

e Boolean operations to test and set bits within words for status testing, masking operations, and bit array manipulation.

¢ Data format conversion to translate variable-length ASCII numbers entered by the system user to internal integer values
for comparison or computation.

e Field editing to convert internal integer values into ASCII display strings inserting commas, decimal points, dollars signs,
suppressing leading zeros, and so on.

e Compound logical or numeric comparison tests to simplify request analysis and internal program decision making.
® Variable-length character string comparison and movement.

¢ Manipulation of ASCII, integer, or mixed data arrays.

QBOL supports each of these functional requirements with simple, direct and consistent language features. The following
QBOL statements iliustrate only a fraction of these features. Variables used in the example statements are assumed to have
been previously defined and to be the type and size suggested by the variable name.

* EXTENDED PRECISION ARITHMETIC

SET ONEWORD1=0NEWORD2+0NEWORD3 SINGLE PRECISION

SET TWOWORD1=0ONEWORD1 [ONEWORD2 DOUBLE PRECISION RESULT

SET THREWORD=0ONEWORD+TWOWORD+THREWORD MIXED VARIABLE SIZES

SET ONEWORD=THREWORD1=THREWORD2 0K IF RESULT FITS IN 16 BITS
SET A=B+(C+D/E+13(F-X"FA"+0*77")) COMPLEX EXPRESSIONS ARE POSSIBLE

* BOOLEAN OPERATIONS

*
SET INTEGER=X"5555" SET ALL EVEN BITS IN ONE WORD
SET INTEGER=INTEGER. XOR. X"FFFF" EXCLUSIVE OR NOW SETS ALL EVEN BITS
SET A=B.OR.C.AND.D.X0OR.E+2 MIX AND MATCH

*

. EDIT NUMERIC FIELD FOR DISPLAY

*
MOVE MASK,'s,8,888 . XX-" MOVE EDIT MASK TO VARIABLE
SET INTEGER=10100000000
EDIT DISPLAY, INTEGER,MASK DISPLAY IS $1,000,000.00

EDIT DISPLAY, INTEGER,"$$,$$$8,888.XX-" SAME RESULT

NESTED COMPOUND LOGICAL AND NUMERIC TESTS
UP TO TWENTY LEVELS OF NESTING ARE POSSIBLE

* % & %

49

IF STRING1=STRING2 STRING COMPARE

AND A.LT.B AND’ED WITH A NUMERIC TEST
OR C+D.GT.ESF-G/H OR’ED WITH A MORE COMPLEX NUMERIC TEST
SET SAM=DOG STATEMENT/S FOR TRUE CONDITION
IF STRING3.GE.STRING4 NESTED IF TEST
SET DOG=SAM DO IF NESTED IF IS TRUE
ELSE
SET DOG=CAT DO IF NESTED IF IS FALSE
ENDIF END NESTED IF
ELSE START OF FALSE STMTS FOR MAIN IF
GOTO HENRY FALSE CONDITION STATEMENT/S
ENDIF
#*
* MANIPULATE VARIABLE-LENGTH CHARACTER STRINGS
#*
MOVE STRING1,STRING2 MOVE STRING2 TO STRING1
MOVE STRING1(2,4),STRING2(1,3) CHARS 1-3 OF STRING2 INTO
* CHARS 2-4 OF STRING1
MOVE STRING1,"ABCXXF*"
MOVE STRING1(4,5),"“DE" STRING1 BECOMES ABCDEF
SET X1=3
SET X2=5
MOVE STRING2,STRING(X1,X2) STRING2 GETS "CDE"™
* USE STRING ANYWHERE AN ALPHA VARIABLE IS PERMITTED
IF STRINGCX1,X2).LT.STRING2(X3,X4)
#*
* CONVERT VARIABLE-LENGTH ASCII INPUT TO INTEGER,
* SET FLAG IF INPUT NOT NUMERIC
* GTERM LU, INPUT,LENGTH
CONV INTEGER, INPUTC1,LENGTH),FLAG
CONCLUSION

Modern Hewlett-Packard hardware technology represents a substantial reduction in the cost of computing. The modern QBOL
programming language represents a similar reduction in the cost of programming. QBOL embodies a complete spectrum of
language features directly related to the development of on-line systems and most programming applications. As a result,
users may now consider the development of on-line systems and programming applications which were not economically
feasible in the past.

Persons desiring to receive, at no charge, a complete programming reference manual for QBOL should address inquiries to:

DAVID C. HAMILTON

THETA COMPUTER SYSTEMS
6919 VALJEAN AVENUE

VAN NUYS, CA 91406

(213) 994-4775

End user single-payment licenses for the QBOL compiler are priced at $5,000.00. The license entitles the user to reproduce the
software for his own use but not for resale.

50

‘BIT BUCKET

-
o)

oftware (.=
]

amantha <&

Samantha has not received any questions from readers for this issue. However, she would like to announce the availability of a
new manual called "RTE Operating System Driver Writing Manual”, HP part number 92200-93005. This manual has over 90
pages of very detailed information on how to write drivers for RTE Il, RTE Ill, RTE-M or RTE IV. Standard drivers (which operate
with the interrupt system off) as well as privileged drivers are covered. The manual includes much “peripheral information”
about the interaction of the driver with the operating systems. Among the many topics covered are: time-out processing, DCPC
processing and driver requests for DCPC assignment, power up/down sequence, mapping done by a driver and much, much
more. It is already in wide use by the HP field organization and has received many words of praise for it's clarity and
completeness of data.

Contact your local HP office for ordering information on this manual.

Samantha invites all questions from our readers of a technical nature on any aspect of HP-1000 systems. All letters will be
answered, whether or not they are chosen for inclusion in the Communicator.

Address: Software Samantha
HP-1000 Communicator
Hewlett-Packard Data Systems Division
11000 Wolfe Road Cupertino, California 95014

51

BULLETINS

RTE-II/lll to RTE-IV UPGRADE COURSE AVAILABLE

If you are one of the many customers who are planning to upgrade your existing RTE-I| or RTE-Ill Operating System installation
to the new RTE-IV Operating System, take note: A two day RTE-///iil to RTE-IV Upgrade Course is available. This course, which
assumes a thorough knowledge of RTE-II/IIl as a prerequisite, will provide you with detailed information on all of the new
features of RTE-IV. Class time is divided between lecture material which explains the new features, and hands-on lab time with
the RTE-IV Operating System. Also supplied is a complete set of new manuals, such as the RTE-IV Programming and
Reference Manual and the RTE-IV Generation Manual. Course fee is $250.00 in the United States. Contact your local HP
representative for a course data sheet and the current schedule of classes.

52

BULLETINS

NEW TRAINING PROGRAM FOR HP-1000 COMPUTER SYSTEMS

Hewlett-Packard has developed a new Customer Training Program for HP-1000 Computer Systems. The introduction of this
program coincides with the introduction of the new RTE/IV operating system and the new HP-1000 F-Series Computers. The
current program is diagrammed on the next pages. Detailed descriptions of each course follow on the succeeding pages.

Highlight of the program is the brand new HP-1000 Disc-Based RTE Operating System Course (22991A). This two week course
covers the use and programming of the RTE-IV operating system in an HP-1000 environment, incfuding program preparation
(FORTRAN IV Compiler, assembler, editor, and loader), EXEC calls to invoke system functions, system software generation,
and use of the Batch-Spool Monitor. All of the new features of RTE-IV, such as EMA (extended memory area), reconfiguration on
boot-up, and the new programming and debugging aids, are covered in detail.

Also new is the HP-1000 Memory-Based RTE Operating System Course (22992A). This two week course covers the use and
programming of the RTE-M operating system in an HP-1000 environment, including program preparation, EXEC calls, system
software generation, and the file manager.

The third new course is the three-day Introduction to HP Minicomputers Course (22951B). This course provides an entry point
into HP computer training for those students who have had no previous experience with minicomputer systems. Students will be
exposed to the concepts of HP minicomputer architecture, operating systems, and high-level languages, thereby satisfying the
prerequisite of the HP-1000 Disc- and Memory-Based RTE courses described above.

More detailed information on these and the other courses in the training program is provided later in this section, where we have
reprinted the Customer Training Section of the HP-1000 Active Software Data Book. This useful guide, which can be obtained

from your local HP representative, contains information on all active HP-1000 software products and associated training
courses.

Unfortunately, no schedules for the new courses were available at print time. However, by the time you receive this issue, a
revised course schedule should be available. We invite you to obtain one from your local HP representative. In any case, the
next issue of the Communicator will contain a complete schedule of the new courses.

SETTING UP A TRAINING PROGRAM

We encourage you to discuss your training requirements with your local HP representative. This person is trained to assist you
in setting up an optimum training plan for your needs. However, the following comments about the new training program may
help you to prepare in advance for this discussion.

In general, courses should be taken in the sequence indicated in the training program diagram, starting from the left, and
proceeding toward the right. Completion of each course in sequence will ensure that all needed prerequisites are satisfied.

If you have not had any previous experience with minicomputer systems, you should start your training with the three day
Introduction to HP Minicomputers Course. Otherwise, you can skip this course, and begin your training with either the HP-1000

Disc-Based or Memory-Based RTE Operating System Course. Which one you choose will depend upon the type of system in

your installation. Note however, that both of these courses require a thorough knowledge of FORTRAN programming as a
prerequisite.

All HP-1000 Computer System users should plan to take one of the Operating Systems Courses described above. Further
training is optional, depending upon the nature of your programming tasks. For example, if you are planning to:

® Design a data base using the IMAGE/1000 software,...
You should take the IMAGE/1000 Data Base Management Course (22977A)

® Connect instruments to your HP-1000 via the HP-IB ...
You should take the HP-IB in a Minicomputer Environment Course (22980B)

e Operate your system as part of a distributed systems (DS/1000) network, ...

53

BULLETINS

You should take the DS/1000 User’s Course (22987A). Furthermore, if you are to be designated as the Network Manager
for your DS/1000 network, you should follow this course with the Theory of Operation of DS/1000 Course (22961B). And if
your network will include an HP-3000 System, you should continue your training and take the one-day Theory of Operation
for DS/1000-to-HP 3000 Course (22962B).

® Write programs in HP Assembly Language,...

You should take the HP-1000 Assembler Programming Course (22952B). (Note that this course is a prerequisite for the
Driver Writing and Microprogramming Courses mentioned below.)

® Interface your own peripheral equipment to your HP-1000 System,...
You should take the HP-71000 Driver Writing Course (22990A) to learn how to write device drivers for your own peripherals.

e Customize your computer for your application using the Microprogramming feature of the HP-1000,...
You should take the HP-1000 E/F Series Computers Microprogramming Course (22983A).

® Write test programs for your HP-ATS System,...
You should take the HP-ATS Test Programming Course (92780A).

SUMMARY

After reviewing the new customer training program discussed in this section, choose a tentative training plan that satisfies your
needs. Then discuss your plan with your local HP representative. This person can assist you with your course selection, provide
you with the latest course schedule, and register you in the appropriate courses at the nearest customer training center.

See you in class!

NOTE: COURSES MUST BE TAKEN
IN LEFT TO RIGHT SEQUENCE
TO ENSURE ALL NEEDED

HP-ATS TEST
PROGRAMMING

PREREQUISITES ARE MET. COURSE
(92780A)
IMAGE /1000
DATA BASE
MANAGEMENT
HP-1000 DISC- COURSE
BASED RTE (22977A)
SYSTEM
COURSE
THEORY OF
INTRODUCTION (223914 DS/1000 THEORY OF
) OPERATION FOR
TO HP USER’S opERATION | | OPERATION
MINICOMPUTERS COURSE 02';905“000 HP 3000
(229518) HP-1000 MEMORY - (22987A) { 61B) (229628}
BASED RTE
R SYSTEM GOURSE
(229924A) HP-1000 HP-1000 E/F-SERIES
FORTRAN ASSEMBLER COMPUTERS MICRO-
PROGRAMMING PROGRAMMING PROGRAMMING
EXPERIENCE coLnSE COURSE
(229528) (229834)
HP-1B IN A R HP 1000 DRIVER
HEWLETT-PACKARD “Em'.%%mgm WRITING COURSE
CUSTOMER TRAINING PROGRAM ENVIRO! (22090
FOR HP 1000 COMPUTER SYSTEMS

54

 BULLETINS

TRAINING SCHEDULE

The current schedule for customer training courses on HP 1000 computer systems products is given in this section. Included
are courses offered both in U.S. and in Europe during the upcoming months.

You can also obtain a copy of the training schedule from your local HP sales office. A European course schedule is available
through the sales offices in Europe; a U.S. schedule through U.S. sales offices.

*Prices quoted are for courses at the U.S. training centers only. For prices of courses at European training centers, please
consult your local HP sales office.

DATA SHEETS

Data sheets giving detailed information on each of the courses scheduled are available from your local HP representative.

REGISTRATION

Requests for enroliment in any of the above courses should be made through your local HP representative. That person will
supply the Training Registrar at the appropriate location with the course number, dates, and requested motel reservations.
Enroliments are acknowledged by a written confirmation indicating the training course, time of class, location and
accommodations reserved.

ACCOMMODATIONS

Students provide their own transportation meals and lodging. The Training Registrar will be pleased to assist in securing motel
reservations at the time of registration.

CANCELLATIONS

In the event you are unable to attend a class for which you are registered, please notify the Training Center Registrar
immediately in order that we may offer your seat to another student.

55

U. S. TRAINING CENTER SCHEDULES, LOCATIONS, AND RATES

CUPERTINO| FULLERTON | ROCKVILLE Data Data Customer
Title Customer Customer Customer Systems Terminals Service Boise
Course Training Training Training Division Division Division Division
Number | Length Price Center Center Center (Cupertino) | (Cupertino) | (Sunnyvale) | (Boise)
229658 RTE-II-1Il Jul 10 Jul 17 Jul 10
Jul 24 Aug 14 Jut 24,
10 days 1000 Aug 7 Aug 7
Aug 21 Aug 21
(Course includes
RTE-II/III operat-
ing system, batch
spool monitor and
file manager.)
22985A RTE-M Aug 14
5 days 500
22977A* IMAGE Jul 24 Jul 31 Aug 21
5 days 500
22952B* 1000 ASMB Aug 14 Jul 17
Aug 28
5 days 500
22987A* DS/1000 Jul 10 Jul 10
User's Course Aug 21
5 days 500
22961B* DS/1000 Aug 28 Jul 17
Theory of Op.
4 days 400
22962B* DS/1000 HP Sep 1 Jul 21
3000 Theory
of Op.
1 day 100
22990A* RTE-Driver Jul 31 Jul 5
Writing
3 days 300
22980B* HP-IB Aug 21
Minicomputer
Environment
4 days 400

*229658 RTE-Ii/ is a prerequisite for these courses. Other prerequisites may also apply —refer to the data sheet for each course for more

information.

56

BULLETINS

U. S. TRAINING CENTER SCHEDULES, LOCATIONS, AND RATES

(Continued)
CUPERTINO | FULLERTON | ROCKVILLE Data Data Customer
Title Customer Customer Customer Systems Terminals Service Boise
Course Training Training Training Division Division Division Division
Number | Length Price Center Center Center (Cupertino) | (Cupertino) | (Sunnyvale) (Boise)
22983A* 21MX-E Jut 17
Microprogram-
ming
5 days 500
92780A* HP-ATS Jul 10
Automatic
Test System
5 days 1000
13294A Dev. Terminal Jul 10
5 days 500
22940A 21 Maint. Jul 10
Aug 7
10 days 1000
22941A 21MX Maint. Jul 24
Jul 31
5 days 500 Aug 21
Aug 28
22942A 7900 Maint. Jul 31
Aug 28
5 days 500
22945A 7905 Maint. Jul 17
Aug 7
5 days 500
91302A 2645 Maint.
3 days 300
22943A 7970B Maint.
5 days 600
22944A 7970E Maint.
5 days 600
229658 RTE-Iiil is a prerequisite for these courses. Other prerequisites may also apply —refer to the data sheet for each course for more
information.

57

 BULLETINS

U.S. TRAINING CENTER ADDRESSES

Cupertino

CUSTOMER TRAINING CENTER
19310 Pruneridge Avenue
Cupertino, CA 95014

(408) 996-9800

DATA SYSTEMS DIVISION
11000 Wolfe Road
Cupertino, CA 95014
(408) 257-7000

DATA TERMINALS DIVISION
19400 Homestead Road
Cupertino, CA 95014

(408) 257-7000

Fullerton

CUSTOMER TRAINING CENTER
1430 E. Orangethorge Avenue
Fullerton, CA 92631

(714) 870-1000

58

Rockville

CUSTOMER TRAINING CENTER
4 Choke Cherry Road

Rockville, MD 20850

(301) 948-6370

Sunnyvale

CUSTOMER SERVICE DIVISION
974 East Arques Avenue
Sunnyvale, CA 94086

(408) 735-1550

Boise

BOISE DIVISION

11311 Chinden Boulevard
Boise, |daho 83702

(208) 377-3000

BULLETINS

EUROPEAN TRAINING CENTER SCHEDULES AND LOCATIONS

Title
Course Milan (M)
Number Length Boblingen| Amsterdam | Madrid | Winnersh| Rome (R) | Stockholm | Grenoble | Orsay | Vienna | Brussels
229658 RTE-11/11 Jul 31 Oct 9 Oct 23| Jur24 | Ju3(My| Aug 28 Jul 17 | Aug 7 Oct 2
Jul 31 Dec 4 Sep4 | Oct9(M)| Oct9 Aug 28| Oct 9
10 days Sept 25 Nov 27 Nov 6
Oct 23
(Course includes
RTE-I/I operat-
ing system, batch
spool monitor and
file manager.)
22985A RTE-M Jul 10
Sep 18
5 days
22977A* IMAGE Jul 17 Jul3 | Aug 29 Jut 3 | Oct23
Sep 4 Nov 6 | Oct 23 Sep 25
5 days
22952B* 1000 ASMB Jul 24 Sep 11 Oct 16| Jul 10 |Sep 11 (M)} Sep 11 Sep 18
Sep 11 Nov 6 Aug 14 Dec 11
5 days Oct 23 Oct 16
22987A" DS/1000 Jut 3 May 29 Jul 10
User's Course Oct 9
5 days
229618~ DS/1000 Aug 28 Jul 17
4 days
22962B* DS/1000 HP Sep 1 Jul 21
3000 Theory
of Op.
1 day
22990A* RTE Driver
Writing
3 days
22980B* HP-IB Aug 14
Minicomputer
Environment
4 days
22983A* | 21MX-E Micro-
programming
5 days

*229658 RTE-1Il is a prerequisite for these courses. Other prerequisites may also apply — refer to the data sheet for each course for more
information.

59

BULLETINS

EUROPEAN TRAINING CENTER SCHEDULES AND LOCATIONS

(Continued)
Title
Course Milan (M)
Number Length Bobiingen | Amsterdam [Madrid | Winnersh | Rome (R) { Stockholm | Grenoble [Orsay | Vienna | Brussels
92780A* | HP-ATS Automatic
Test System
5 days
13294A Dev. Terminal
5 days
22940A 2100 Maint.
10 days
22941A 21MX Maint.
5 days
22942A 7900 Maint.
5 days
22945A 7905 Maint.
5 days
22945A 7905 Maint.
5 days
91302A 2645 Maint.
3 days
22943A 7970B Maint.
5 days
22944A 7970E Maint.
40270A Intro to HP Jul 17 Jul 31
Computers Sep 25 Oct 9
5 days
22965B- FORTRAN IV Oct 16 Oct 2
HO1
5 rdays

*009658 RTE-Ii is a prerequisite for these courses. Other prerequisites may also apply — refer to the data sheet for each course for more

information.

60

BULLETINS

EUROPEAN TRAINING CENTER ADDRESSES

Boblingen

Kundenschulung
Herrenbergerstrasse 110
D-7030 Boblingen, Wurttemberg
Tel: (07031) 667-1

Telex: 07265739

Cable: HEPAG

Brussels

Avenue du Col Vert, 1
Groenkraaglaan
B-1170

Brussels, Belgium
Tel: (02) 672 22 40

Stockholm

Enighetsvagen 1-3, Fack
S-161 20 Bromma 20
Tel: (08) 730 05 50
Cable: MEASUREMENTS
Stockholm

Telex: 10721

Madrid

Jerez No. 3
E-Madrid 16
Tel: (1) 458 26 00
Telex: 23515 hpe

Amsterdam

Van Heuven Goedhartlaan 121
Amstelveen - 1134
Netherlands

Tel: 02 672 22 40

61

Orsay

Quartier de Courtaboeuf
Bolte Postale No. 6
F-91401-Orsay

France

Tel:(01) 907 7825

Grenoble

5, avenue Raymond-Chanas
38320 Eybens

Tel: (76) 25-81-41

Telex: 980124

Vienna

Handelskai 52

Postfach 7

A - 1205 Wien

Tel: (0222) 35 16 21-32
Telex: 75923

Cable: Hewpack Wien

Milan

Via Amerigo Vespucci, 2
20124 Milan

Tel: (2) 62 51

Cable: HEWPACKIT Milano
Telex: 32046

Winnersh

King Street Lane
Winnersh, Wokingham
Berkshire RG11 5 AR
Tel: Wokingham 784774
Cable: Hewpie London
Telex: 8471789

L

nll

HEWLETT .hp; PACKARD

User training services

NOTE: These three pages are reprinted from the latest edition

HP 1000 user training services supporting active software
products include the courses listed in this section. The
course listings are subdivided into regularty-scheduled
courses whose times of presentation are listed on the
Hewlett-Packard Computer Systems Group Course
Schedule and request-scheduled courses, which are
scheduled by the respective Hewlett-Packard Technical
Center when there are sufficient requests to justify presenta-
tion of the course material. Any of the courses listed here
may be presented at suitably-equipped customer's facilities
by arrangement with the nearest Hewlett-Packard Technical
Center. Technical Center addresses and tetephone num-
bers are listed on the Hewlett-Packard Computer Systems
Group Course Schedule.

Regularly-scheduled training courses

22951B Introduction to HP Minicomputers

Description: This course provides an entry point into HP
computer training for those customers who have had no
previous experience with minicomputer systems. Upon
completion of the course, the student will be familiar with the
concepts of:

1. HP minicomputer architecture.

2. Operating systems.

3. High level languages.

Length: 3 days.

Lab: Provides a hands-on introduction to the hardware and
software operation of HP 1000 minicomputers. This includes
operation of the computer front panel, system boot-up pro-
cedures and on-line loading and execution of programs.

Prerequisites: None. Students may be either hardware or
software oriented.

22991A HP 1000 Disc-Based RTE System Course

Description: This course covers the operation of the RTE-IV
operating system in an HP 1000 system environment. This
includes program preparation using standard compiler, as-
sembler, editor, and loader; disc usage; system software
generation; and use of the Batch-Spool Monitor (BSM),
including the file manager.

Length: 10 days.

Lab: Provides hands-on experience in operating, program-
ming, and generating the RTE-IV system, including BSM.

Prerequisites: Demonstrated proficiency in FORTRAN pro-
gramming (such as completion of a FORTRAN programming
course) and completion of the Introduction to HP Minicom-
puters course (22951B) or equivalent minicomputer
experience.

62

of the HP 1000 Active Software Data Book.

22992A HP 1000 Memory-Based RTE
System Course

Description: This course covers the use of the RTE-M opera-
ting system in an HP 1000 system environment. This in-
cludes program preparation using the standard flexible
disc-based FORTRAN IV compiler, assembler, editor, re-
locating and absolute loaders; system software generation:
and use of the file manager.

Length: 10 days.

Lab: Provides hands-on experience in operating, program-
ming, and generating the RTE-M system, and in on-line
program loading and removal.

Prerequisites: Demonstrated proficiency in FORTRAN pro-
gramming (such as completicn of a FORTRAN programming
course) and completion of the Introduction to HP Minicom-
puters course (22951B) or equivalent minicomputer
experience.

22987A DS/1000 User's Course

Description: This course covers the fundamentals of the HP
DS/1000 Distributed Systems Network, including: network
philosophy, operator commands, remote /O remote file
access, remote EXEC calls, program-to-program calls,
system software generation, and store-and-forward
communications. Information is provided on both memory-
based and disc-based RTE systems operation in addition to
information on an HP 3000 MPE link.

Length: 5 days.

Lab: Provides hands-on experience in programming of a
muiti-node DS/1000 distributed systems network.

Prerequisites: Completion of either the HP 1000 Disc-Based
RTE System Course (22991A) or the HP 1000 Memory-
Based RTE System Course (22992A), or equivalent RTE
experience. The HP 3000 Comprehensive Introduction
Course (22801A) is also recommended for those customers
whose networks include an HP 3000 node.

22961B Theory of Operation of DS/1000

Description: This course provides a thorough exposure to
the internal functioning of the DS/1000 software as it relates
to an HP 1000-to-HP 1000 link. Topics covered include
communications management, microcoded driver, remote
file manager, network configuration, link protocol, genera-
tion, and performance evaluation. Information is provided on
the level of program listings, flowcharts, and tables.

NQTE: Customers whose networks include an HP 3000 node should
also take the one-day DS/1000 to HP 3000 Theory of Operation
Course (229628B).

Length: 4 days.

Lab. Provides hands-on programming of a DS/1000 network,
use of system utilities, diagnostics, and troubleshooting
tools. System generation and network configuration are
covered in detail.

Prerequisite: Completion of the DS/1000 User's Course
(22987A).

22962B Theory of Operation for
DS/1000-to-HP 3000

Description: This course provides a thorough exposure to
the internal functioning of the DS/1000 software as it relates
to an HP 1000-to-HP 3000 link. Topics covered include
communications management, network configuration, link
protocol, HP 1000 as a master to MPE, and HP 1000 as a
slave to MPE. Information is provided on the level of program
listings, flowcharts, and tables.

Length: 1 day.
Lab: None.

Prerequisite: Completion of the Theory of Operation of
DS/1000 Course (229618}, which is normally taken earlier in
the same week.

22977A IMAGE/1000 Data Base Management
System Course

Description: This course covers the creation, building,
back-up, and modification of data bases using the IMAGE/
1000 Data Base Management System. It also includes the
writing of programs to access a data base and the use of
QUERY to access a data base.

Length: 5 days.

Lab: Provides hands-on experience with IMAGE/1000
software on an HP 1000 system.

Prerequisite: Completion of the HP 1000 Disc-Based RTE
System Course (22991A) or equivalent disc-based RTE
experience,

22952B HP 1000 Assembler Programming Course

Description: This course covers the operation of the RTE
assembler in an HP 1000 computer system environment.
Major emphasis is placed on the development of assembly
language programs for use in an RTE operating system.

Length: 5 days.

Lab: Provides extensive hands-on experience in the coding,
editing, assembly, and debugging of RTE assembler pro-
grams using an HP 1000 system.

Prerequisites: Completion of either the HP 1000 Disc-Based
RTE System Course (22991A) or the HP 1000 Memory-
Based RTE System Course (22992A), or equivalent RTE
experience.

22990A HP 1000 Driver Writing Course

Description: This course covers the techniques and re-
guirements for developing RTE device drivers for use in an
HP 1000 system. Topics covered include: HP 1000 Com-
puter family hardware and software /O structure, interrupt-
driven drivers, RTE driver structure and operation, use of
DCPC by drivers. and privileged RTE drivers.

Length: 3 days

63

Lab: Provides extensive hands-on programming experience
in the development of RTE drivers.

Prerequisites: Completion of either the HP 1000 Disc-Based
RTE System Course (22991A) or the HP 1000 Memory-
Based RTE System Course (22992A) and the HP 1000
Assembter Programming Course (22952B), or equivalent
RTE and assembly language experience.

22980B HP-IB in a Computer Environment

Description: This course provides an introduction to HP-I1B
concepts and theory as they apply to use in HP 1000 Com-
puter System controlled measurement systems as well as
training in the programming of HP-1B on an RTE system.

Length: 4 days.

Lab; Provides hands-on experience with a typical HP 1000
computer controlled HP-IB instrument system.

Prerequisite: Completion of either the HP 1000 Disc-Based
RTE System Course (22991A) or the HP 1000 Memory-
Based RTE System Course (22992A) or equivalent RTE
experience.

22983A HP 1000 E/F-Series Computers
Microprogramming Course

Description: This course covers the theory and use of HP
microprogramming hardware and software to prepare, alter,
and install microprograms for HP 1000 E-Series computers.

Length: 5 days.

Lab: Provides hands-on experience with preparation and
installation of microprograms.

Prerequisite: Completion of either the HP 1000 Disc-Based
RTE System Course (22991A) or the HP 1000 Memory-
Based RTE System Course (22992A) and the HP 1000 As-
sembler Programming Course (22952B), or equivalent RTE
and assembly language experience.

HP ATS Test Programming Course

Description: This course is intended for customer's test en-
gineers who write test programs for an HP-ATS Automatic
Test System. Topics covered include Automatic Test System
architecture, test monitor, instrument programming in
BASIC, UUT interfacing, and switching control.

Length: 5 days.

Lab: The student uses a multi-terminal system in laboratory
sessions to develop programming skills.

Prerequisite: A strong background in electronic test equip-
ment and test procedures as well as training or experience
in BASIC or FORTRAN programming. The student must also
complete at least the first week of the HP 1000 Disc-Based
RTE System Course (22991A).

Request-scheduled training courses

22960A HP 1000 M-Series Computers
Microprogramming Course

Description: This course covers the theory and use of HP
microprogramming hardware and software to prepare, alter.
and install microprograms for HP 1000 M-Series computers

Length: 5 days.

Lab: Provides hands-on experience with preparation and
installation of microprograms.

Prerequisite: Completion of either the HP 1000 Disc-Based
RTE System Course (22991A) or the HP 1000 Memory-
Based RTE System Course (22992A) and the HP 1000 As-
sembler Programming Course (22952B) or equivalent RTE
and assembly language experience.

Maintenance training courses

Maintenance training is also available. See the current HP
Computer Systems Group Course Schedule for the list of
available courses.

Ordering, registration, and
scheduling information

Information on tuition for scheduled courses is provided in
the HP 1000 Computers Selection and Configuration Guide
and in the HP 1000 Computer Systems Configuration and
Site Preparation Guide. Registration and course scheduling
information is provided in the current HP Computer Systems
Group Course Schedule. All of these documents are avail-
able from your Hewlett-Packard Representative.

64

. — ———— m—— -

m —— e e —— o e . —— — o m—— i T Amnc e e o e A

- e A e G e ey — it o e i e e b Py e

. At e A — -

HEWLETT-PACKARD
COMPUTER SYSTEMS COMMUNICATOR ORDER FORM

Please Print:

Name Title
Company
Street
City State 2ip Code
Country
[J HP Employee Account Number Location Code
[C] DIRECT SUBSCRIPTION List Extended Total
Part No. Description Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 $48.00
(if quantity is greater than 1 discount is 40%) .
TOTAL DOLLARS for 56951-6111
5951-6112 COMMUNICATOR 2000 2500
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6112
59516113 COMMUNICATOR 3000 48.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6113
[J BACK ISSUE ORDER FORM (cash only in U.S. dollars)
(subject to availability) Issue List Extended Total
Part No. Description No. Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 $10.00
10.00
10.00
TOTAL DOLLARS
5951-6112 COMMUNICATOR 2000 ____ $500
5.00
5.00
TOTAL DOLLARS
5951-6113 COMMUNICATOR 3000 . $10.00
10.00
10.00

TOTAL DOLLARS
TOTAL ORDER DOLLAR AMOUNT

(J SERVICE CONTRACT CUSTOMERS

You will receive one copy of either COMMUNICATOR 1000,
2000, or 3000 as part of your contract. Indicate additional
copies below and have your local office forward. Billing will
be included in normal contract invoices.

Number of additional copies

[FOR HP USE ONLY]
CONTRACT KEY

5951-6111 Number of additional copies
5951-6112 Number of additional copies
5951-6113 Number of additional copies

Approved

HEWLETT-PACKARD
COMMUNICATOR SUBSCRIPTION AND ORDER INFORMATION

The Computer Systems COMMUNICATORS are bi-monthly systems support publications availahle from Hewlett-Packard
on an annual (6 issues) subscription.

The following instructions are for customers who do not have Software Service Contracts.

1. Complete name and address portion of order form.

2. For new direct subscriptions (see sample below):

Indicate which COMMUNICATOR publication(s} you wish to receive.
b. Enter number of copies per issue under Qty column.

c. Extend dollars {quantity x list price} in Extended Dollars column.

d

e

o

. Enter discount dollars on line under Extended Dollars. (If quantity is greater than 1 you are entitled to a 40% discount.™)
. Enter Total Dollars (subtract discount dollars from Extended List Price dollars).

*To qualify for discount all copies of publications must be mailed to same name and address and ordered at the same time.

SAMPLE
DIRECT SUBSCRIPTION List Extended Total
Part No. Description Qty Price Dollars Dollars
59516111 COMMUNICATOR 1000 3 _ s4800 /4400
(if quantity is greater than 1 discount is 40%) 57.60
TOTAL DOLLARS for 5951-6111 8 86.40

3. To order back issues {see sample below):
Indicate which publication you are ordering.
Indicate which issue number you want.
Enter number of copies per issue.

Extend dollars for each issue.

Enter total dollars for back issues ordered.

®ao0ow

All orders for back issues of the COMMUNICATORS are cash only orders (U.S. dollars only) and are subject to availability.

SAMPLE

BACK ISSUE ORDER FORM {(cash only in U.S. dollars)
(subject to availability)

Issue List Extended Total
Part No. Description No. Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 XX / $10.00 #/0.00
XX 2 10.00 20.-00
10.00
TOTAL DOLLARS #$30.00

4. Domestic Customers: Mail the order form with your U.S. Company Purchase Order or check (payable to Hewlett-
Packard Co.) to:
HEWLETT-PACKARD COMPANY
Computer Systems COMMUNICATOR
P.0. Box 61809
Sunnyvale, CA 94088
U.S.A.

5. International Customers: Order by part number through your local Hewlett-Packard Sales Office.

e e - — —— T G— — — — — — — — — — ey S

— — e — ——

HEWLETT-PACKARD
COMPUTER SYSTEMS COMMUNICATOR ORDER FORM

Please Print:
Name Title
Company
Street
City State Zip Code
Country
(J HP Employee Account Number Location Code
] DIRECT SUBSCRIPTION List Extended Total
Part No. Description Qty Price Dollars Dolltars
5951-6111 COMMUNICATOR 1000 ____ %48.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6111
5951-6112 COMMUNICATOR 2000 25.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6112
5951-6113 COMMUNICATOR 3000 48.00
{(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6113
[(J BACK ISSUE ORDER FORM (cash only in U.S. dollars)
(subject to availability) Issue List Extended Total
Part No. Description No. Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 $10.00
10.00
- 10.00
TOTAL DOLLARS
5951-6112 COMMUNICATOR 2000 $ 5.00
5.00
5.00
TOTAL DOLLARS
5951-6113 COMMUNICATOR 3000 ___ $10.00
10.00
- 1000

TOTAL DOLLARS
TOTAL ORDER DOLLAR AMQUNT

(J SERVICE CONTRACT CUSTOMERS

You will receive one copy of either COMMUNICATOR 1000,
2000, or 3000 as part of your contract. Indicate additional
copies below and have your local office forward. Billing will
be included in normal contract invoices.

Number of additional copies

{FOR HP USE ONLY]

CONTRACT KEY

5951-6111
5951-6112
5951-6113

Approved

Number of additicnal copies
Number of additional copies
Number of additional copies

HEWLETT-PACKARD
COMMUNICATOR SUBSCRIPTION AND ORDER INFORMATION

The Computer Systems COMMUNICATORS are bi-monthly systems support publications availahle from Hewlett-Packard
on an annual (6 issues) subscription.

The following instructions are for customers who do not have Software Service Contracts.

1. Complete name and address portion of order form.

2. For new direct subscriptions (see sample below):

Indicate which COMMUNICATOR publication(s) you wish to receive.
Enter number of copies per issue under Qty column.

Extend dollars {quantity x list price} in Extended Dollars column.

Enter discount dollars on line under Extended Dollars. {If quantity is greater than 1 you are entitled to a 40% discount.”)
Enter Total Dollars {subtract discount dollars from Extended List Price dollars).

d

®ca0eo

*To qualify for discount all copies of publications must be mailed to same name and address and ordered at the same time.

SAMPLE

DIRECT SUBSCRIPTION List Extended Total

Part No. Description Qty Price Dolflars Dollars
5951-6111 COMMUNICATOR 1000 3 $48.00 #/44.00

(if quantity is greater than 1 discount is 40%) 57 60

TOTAL DOLLARS for 5951-6111 8 86-40

3. To order back issues {see sample below):

Indicate which publication you are ordering.
Indicate which issue number you want.
Enter number of copies per issue.

Extend dollars for each issue.

Enter total dollars for back issues ordered.

sao0oe

All orders for back issues of the COMMUNICATORS are cash only orders (U.S. dollars only) and are subject to availability.

SAMPLE

BACK ISSUE ORDER FORM (cash only in U.S. dollars)
(subject to availability}

Issue List Extended Total
Part No. Description No. Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 X X / $10.00 Br0.00
XX 2 10.00 20-00
10.00
TOTAL DOLLARS $30.00

4. Domestic Customers: Mail the order form with your U.S. Company Purchase Order or check {payable to Hewlett-
Packard Co.) to:
HEWLETT-PACKARD COMPANY
Computer Systems COMMUNICATOR
P.O. Box 61809
Sunnyvale, CA 94088
U.S.A.

5. tnternational Customers: Order by part number through your local Hewlett-Packard Sales Office.

e o e — — —— ——— — —— — ——— — — ——— — — ———— ———— — —

— — —— — — — — — — — ——
— —-— —
—— —— — — —

- ——— — e — —

. e W S — R —— G S — — G — Cm—— Cwn Gt —— e S S —— —

A, G —— . oA R G e SN Sy Gmn i — — e S ety —— —

o aneme own m— ——

Please photocopy this order form if
you do not want to cut the page off.
You will automatically receive a new
order form with your order. CONTRIBUTED SOFTWARE
Direct Mail Order Form

HEWLETTHF PACKARD

NOTE: No direct mail order can be
shipped outside the United States.

Please Print:
Computer
Name Title L Museum
Company
Street .
City State Zip Code
Country
Item Part at D ioti List Price Extended
No. No. \h escription Each Total
Sub-total
*Tax is verified by computer according to your ZIP CODE. If no sales tax is
added, your state exemption number must be provided: #
If not, your order may have to be returned. Your State & Local
Sales Taxes™
Domestic Customers: Cash required on all orders less than $560.00. Mail the order
form with your check or money order (payable to Hewlett- Handling Charge 1| 50
Packard Co.) or your U.S. Company Purchase Order to:
TOTAL

HEWLETT-PACKARD COMPANY
Contributed Software

P.0O. Box 61809

Sunnyvale, CA 94088

International Customers: QOrder through your loca) Hewlett-Packard Sales office. No direct mail order can be shipped

outside the United States.

All prices domestic U.S.A. only, Prices are subject to change without notice.

Orxdering Information

ORDERING INFORMATION

Programs are available individually in source language on either paper tape, magnetic tape, or
cassettes as indicated in the abstracts.

To order a particular program, it is necessary to specify the program identification number, together
with an option number which indicates the type of product required. The program identification
number with the option number composes the ordering number.

For example:
22113A-K01
The different options are.

K01 — Source paper tape and documentation
K21 — Magnetic tapes and documentation

NOTE
Specify 800 BPI or 1600 BPI Magnetic tape.
B01 — Binary tape and documentation
D00 — Documentation
L00 — Listing

Not all options are available for all programs.

Ten-digit numbers do not require additional option numbers such as K01, K21, etc. The 10-digit
number automatically indicates the option or media ordered.

For example:

22681-18901 — The digits 189 indicate source paper tape plus documentation.

22681-10901 — The digits 109 indicate source magnetic tape plus documentation (800 BPI
magnetic tape)

22681-11901 — The digits 119 indicate source magnetic tape plus documentation (1600
BPI magnetic tape)

22681-13301 — The digits 133 indicate source cassettes plus documentation

Only those options listed in each abstract are available.
Refer to the Price List for prices and correct order numbers.

Hewlett-Packard offers no warranty, expressed or implied and assumes no responsibility in
connection with the program material listed.

— — — e — —— —— ———— A — — — — — T — —— — —— —

. s — —— — — -

— - — G S—— — — — — — — — — — — — — — —— —

e G we— e E—— p—— . S—— — —— - . ——— W S s o— —

. o — —— —— —

HEWLETT-PACKARD
LOCUS CONTRIBUTED SOFTWARE CATALOG
DIRECT MAIL ORDER FORM

Please Print:
Name Title
Company
Street
City State Zip Code
Country
[] HP Employee Account Number Location Code
List Price Extended
Part Number Description Qty. Each Total
22000-90099 Locus Contributed Software Catalog $15.00
“If no sales tax is added, your state exemption number must Your State & Local
be provided: # Sales Taxes™
If not, your order may have to be returned. Handling Charge 1.50
TOTAL

Domestic Customers: Mail the order form with your check or
money order (payable to Hewlett-Packard Co.) to:

HEWLETT-PACKARD COMPANY
LOCUS CATALOG

P.O. Box 61809

Sunnyvale, CA 94088

International Customers: Order by part number through your local Hewlett-Packard Sales Office.

NOTE: No direct mail order can be shipped outside the United States. All prices domestic U.S.A. only. Prices are
subject to change without notice.

— v

- -

COMPUTER SYSTEMS COMMUNICATOR
NOT TO BE USED FOR ORDERING COMMUNICATOR SUBSCRIPTIONS

HEWLETT@ PACKARD
Direct Mail
SHiP TO. arts and Supplies Order Form
NAME
CUSTOMER
COMPANY REFERENCE =
STREET TAXABLE"?
CITY STATE Z21P CODE
Item |Check Part Qty Description List Price Extended
No. | Digit No. Each Total
Special Instructions I:
Sub-total :
*Tax s verified by computer according to your ZIP CODE. {f no sales tax s Your State & Local
added, your state exemption number must be provided: = ___ Sales Taxes"
tf not, your order may have to be returned
Check or Money Order, made payable to Hewlett-Packard Handling Charge 1150
Company, must accompany order.
. . TOTAL
When completed, please mail this form with payment to:
HEWLETT-PACKARD COMPANY
Mail Order Department Phone: (415) 968-9200
P.O. Drawer #20
Mountain View, CA 94043
Most orders are shipped within 24 hours of receipt. Shipments to California, Oregon and Washington will be made via UPS. Other
shipments will be sent Air Parcel Post, with the exception that shipments over 25 pounds will be made via truck. No Direct Majl
Order can be shipped outside the U.S.

Although every effort is made to ensure the accuracy of the Prices quoted apply only in U.S.A. If outside the U.S., contact ™~
data presented in the Communicator, Hewlett-Packard can- your local sales and service office for prices in your country. /'
not assume liability for the information contained herein. T

Printed in U.S.A. 6/78 Part No. 5951-6111

